and the second second

RF Wave Experiments of Astroparticles of Taiwan

T.C Liu LeCosPA, NTU

RF Wave Experiments of Astroparticles of Ta

April 19, 2016 1 / 58

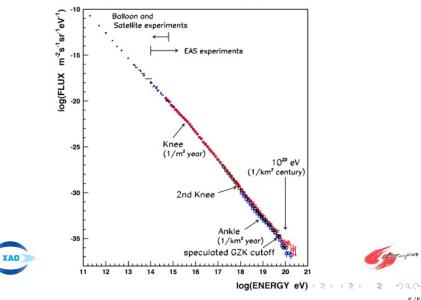
Outline:

• Cosmic Rays & Neutrino

- Experiments ANITA
- Experiments ARA
- Experiments TAROGE
- Results and Future Plans

Team Members

Unsolved Problems of UHECR & UHECN


- What accelerates the cosmic particles?
- Where are the sources?
- Neutrino hierarchy?
- Beyond standard oscillation?
- Neutrino cross section at UHE ?
- How many generations of neutrino?
- Absolute mass of the neutrinos?

< ロ > < 同 > < 回 > < 回 >

From Cosmic Rays to Neutrino

From Cosmic Rays to Neutrino

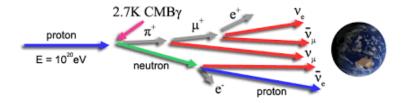
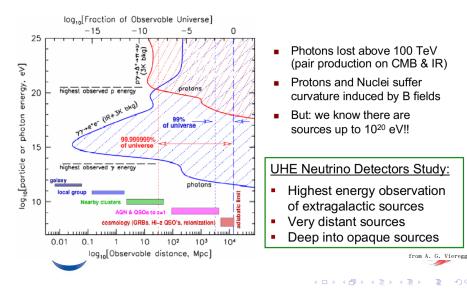


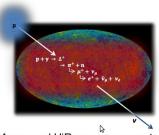
Figure : Neutrino flavor ratio is depend on its energy.

< □ > < □ > < □ > < □ > < □ >


Neutrino Sources and its Propagation

 $\mu^{T} + \upsilon_{\mu}$ Neutrino Flavor Radio at Source $\mu^{+} \rightarrow e^{+} + v_e + \overline{v_{\mu}}$ $v_e:v_u:v_r=1:2:0$ (Pion source) $v_e: v_u: v_\tau = 0:1:0$ (Muon-damped source) At Earth: Standard Oscillation 1:1:1 (pion source) 1:2:2 (Muon-damped source) 6:1:1 (normal mass hierarchy) 0:1:1 (inverted mass hierarchy)

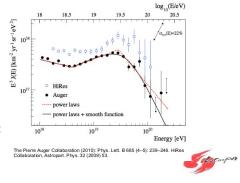
Figure Flavor analysis a sharp probe to test ν source, oscillation, decay, and mass hierarchy.


イロト イヨト イヨト イヨト

Astrophysics Potentials The Ideal UHE Messenger

20

UHE Neutrino & GZK Effect


Auger and HiRes measurements of UHE cosmic rays consistent with GZK cut-off

Guaranteed GZK neutrino flux, but how large?

copy from Jonathan's slides

At energies above ~10^{19.5}eV cosmic rays will interact with CMB photons producing neutrinos

Process is known as the GZK effect

GZK Radius

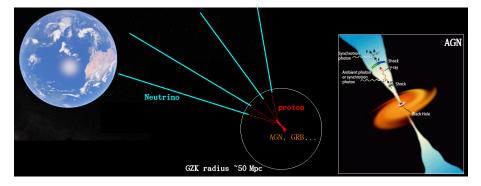


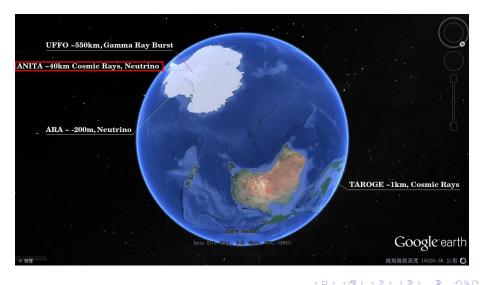
Figure : The UHE neutrinos can point back to the original UHE source without bending of B field.

Care por

э

*ロト *個ト *国ト *国ト

10/58


Short Summary : The UHE Neutrinos

- Trace particle UHECR hyper-accelerators to very early epochs Even at z[~]10 or more, GZK neutrino energies peak at 10-100 PeV they all point back directly to the UHECR sources
- Their flux is constrained by UHECR sources, once determined
- Neutrino Flavor physics

we can encode source information by flavor ratio, even new physics (neutrino decay?, generations?)

The ANtarctic Impulsive Transient Antenna (ANITA)

The ANITAs

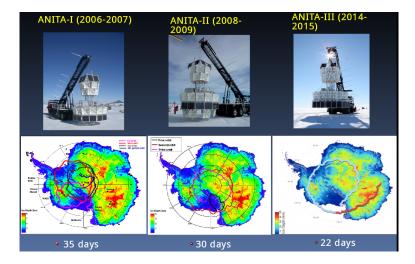


Figure : Three ANITAs were launched until 2015.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The ANtarctic Impulsive Transient Antenna (ANITA-III)

Figure : ANITA-III instrument, 2014-1015.

The ANITA Concept

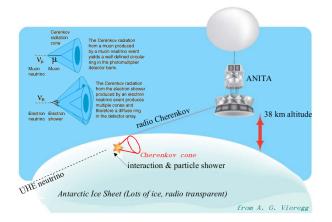
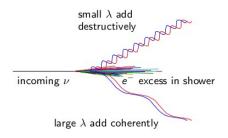
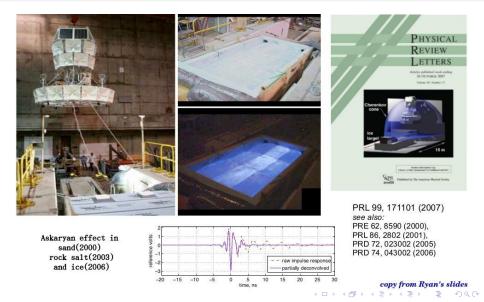



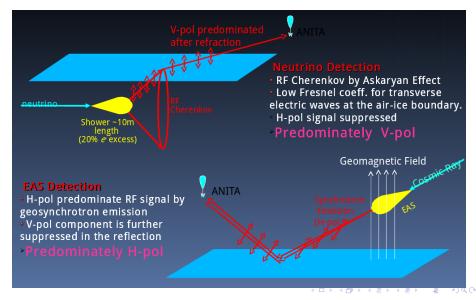
Figure : Cherenkov radiation is electromagnetic radiation emitted when a charged particle passes through a dielectric medium at a speed greater than the velocity of light in that medium.

イロト 不得 トイヨト イヨト 二日

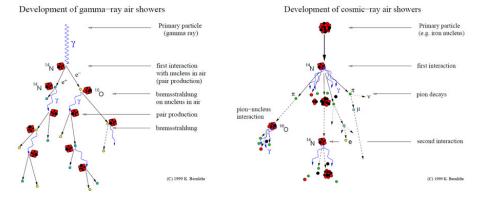
Coherent Radio Emission (Askaryan Effect)


- Askaryan effect: Neutrinos with energy above $\sim 30 \text{ PeV}$ most efficiently detected with radio
- Delta-ray production, Compton scattering and positron annihilation give charge excess
- Compact bunch moves together
- Long wavelengths add coherently

イロト イポト イヨト イヨト


The South Pole has the perfect combination of ice volume, ice RF-transparency, and existing science infrastructure for this experiment.

Askaryan Radiation Experiment in SLAC



17/58

Signal Type (neutrino VS. EAS)

EM Shower & Hadronic shower

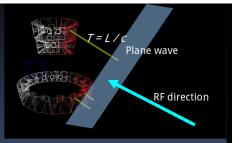
19/58

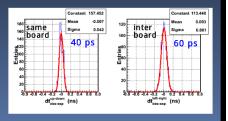
・ロト (周) (王) (王) (王)

Setup of T-510 (Geo-Synchrotron Radiation)

Figure : Electron beam creates secondary cascades in a 4 m long high-density polyethylene (HDPE) target placed in a magnetic field (up to 1000G).

ヘロア 人間 アメヨア ション・

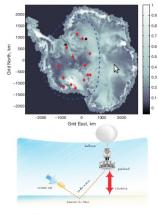

Event Reconstruction


• Angular reconstruction is a crucial part in the ANITA data analysis.

- Powerful background rejection incoherent thermal events (99% of data set) anthropogenic RF events from existing bases air shower RF events.
- Neutrino reconstruction

neutrino direction information provides R and refraction angle for energy measurement.

- Angular reconstruction using timing.
- time resolution; 40-60 ps (time difference between channels)
- Achieved angular resolution;
 0.2° (zenith) and 0.8° (azimuth.)



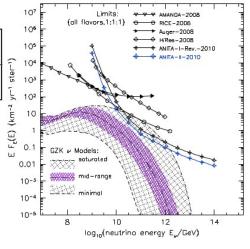
イロト イポト イヨト イヨト

э

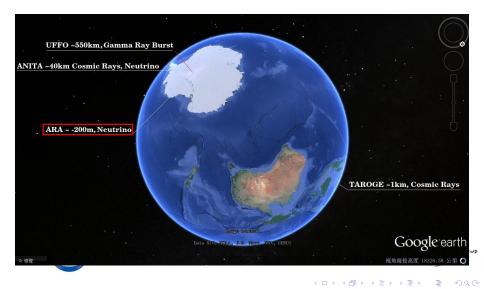
Results of ANITA I & II (cosmic rays)

PRL 105, 151101 (2010)

- A combination of **vxB** and Fresnel coefficients result in air shower emission being horizontally polarised at the payload
- ANITA-I detected 16
 isolated H-pol candidate
 UHECR events
- ANITA-II did not trigger on the H-pol channels -Doh!!
- Still detected 5 UHECR candidate events


イロト イポト イヨト イヨト

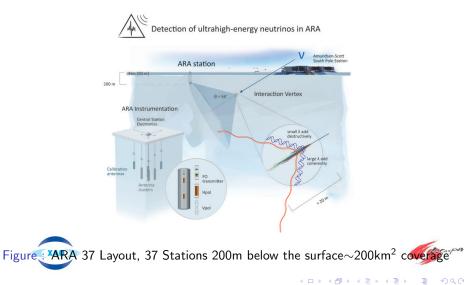
Results of ANITA I & II (Neutrino)


ANITA-II Results

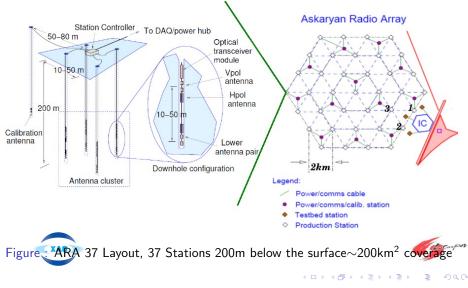
Isolated v-pol events	1	
Expected background events	0.97 ± 0.42	

 Combine with efficiency to extract world's best limit on UHE neutrino flux above 10¹⁹eV

ARA at -200m



ARA at -200m


The Askaryan Radio Array (ARA) Detecting Neutrinos in Antarctica

ARA-37 Concept

ARA-37 Concept

DAQ System and Antenna Cluster

ARA Sub-Station – DAQ

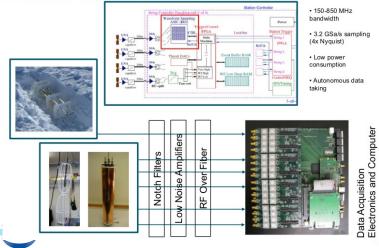
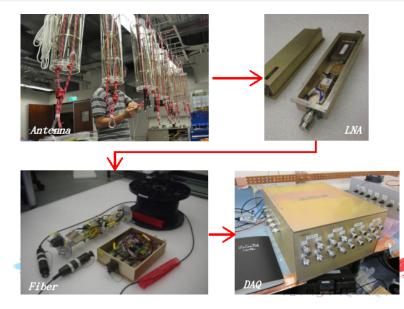



Figure : Each station has 4 string with 16 channels

28/58

(lacorpos

DAQ System and Antenna Cluster

29/58

12Compos

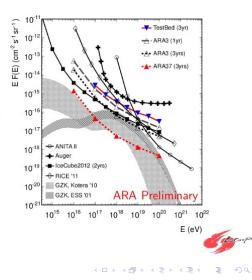
Build & Test in Taiwan

Figure : Building ARA2 & ARA3 last year

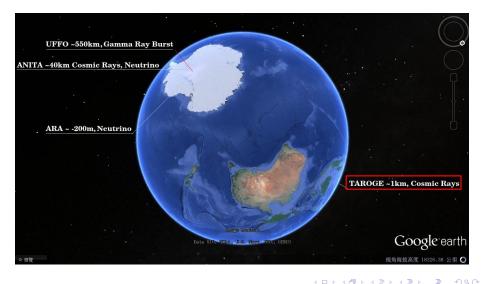
・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Drilling and Deployment

- Hot water drill creates 6" wide holes
- Holes are pumped dry
- Approaching $\sim 8\,\text{hr}\times\sim 1$ drill crew per 200 m hole
- Instrumentation deployed from greenhouse sled

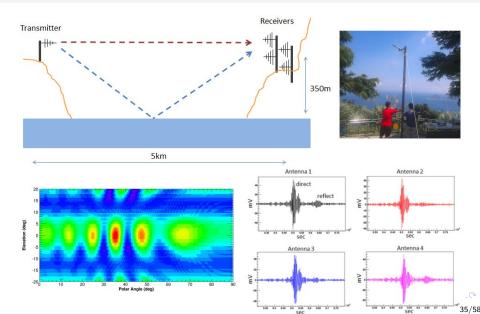


イロト イボト イヨト イヨト


Simulation & Expected Sensitivity

- In-house tool called AraSim
- Simulates
 - \rightarrow neutrino interaction
 - \rightarrow radio emmission
 - \rightarrow radio propagation
 - \rightarrow instrument response
 - \rightarrow thermal, instrument noise
 - ightarrow hardware trigger
 - \rightarrow digitized waveforms
- Has been used to calculate trigger-level neutrino sensitivity

Outline: The Distribution of Experiments

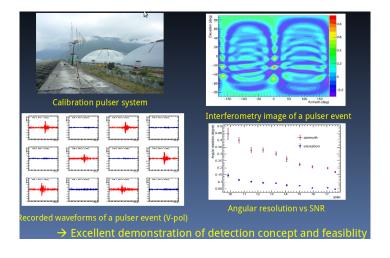


Taiwan Astroparticle Radio wave Observatory for Geo-synchrotron Emission(TAROGE)

Figure : Large coverage (up to the horizon) and High Duty Cycle (~100%)

Reflection Test of TAROGE

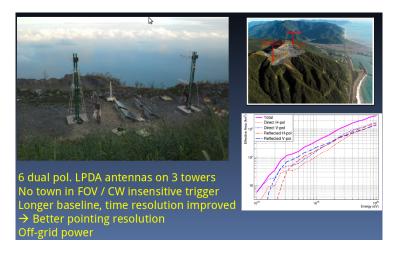
TAROGE at 1200~2000m



TAROGE I

A prototype station at 1km height @ Heping 2 Antennas (6 V-pol + 6 H-pol) Deployed in July 2014 Successful year-round operation for noise survey


TAROGE-1 Validation


38/58

イロト 不得 トイラト イラト 一日

Noise Map

TAROGE-II

イロト 不得 トイラト イラト 一日

TAROGE 2 and Future

Cross Section of Neutrino

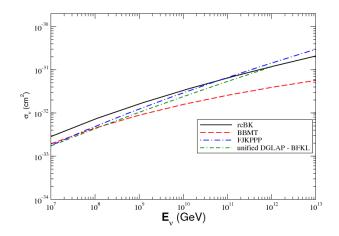


Figure : Neutrino cross section. 1 barn $=10^{-24}$ cm². [Phys.Rev. D83 (2011) 014014]

э

イロト イポト イヨト イヨト

Interaction Length of Neutrinos

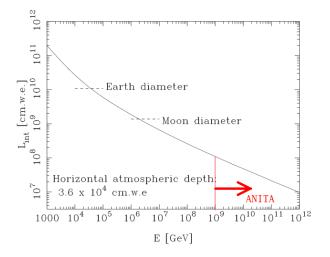


 Figure : The neutrino interaction length (in centimeters water equivalent distance) [Astropart.Phys. 35 (2012) 383-395]

э

UHE Neutrino Interact with Earth

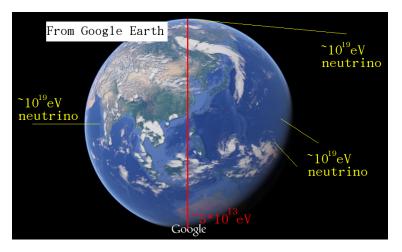


Figure : The interaction length of neutrino with $5 * 10^{13}$ eV is close to diameter of Earth. The interaction length for 10^{19} eV neutrino is $6 * 10^7$ g/cm².

(日)

Earth Skimming Events

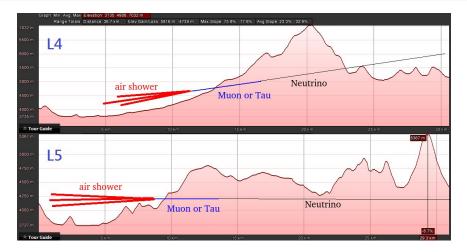


Figure : Neutrino intact with Earth and is converted to lepton. Lepton can generate Detector can detect the radation that emit by induced air shower.

イロト 不得下 イヨト イヨト 二日

Noise Survey in Taiwan

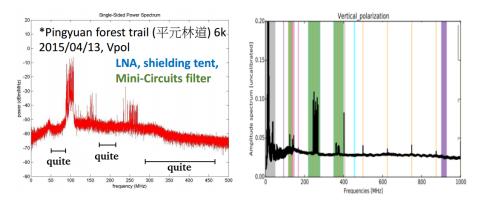


Figure : left: noise background in Taiwan mountain, right noise background in Antarctica.

Start the Trip from Now

Figure : This survey is the most important trip of our project.

ANITA v.s. TAROGE

AERA + + + Ground Antarctic I	Atmosphere Ce O	Reflected 4	TARO GE untai
Parameter₽	ANITA-I@	TAROGE (2km)+	Factor
Detection Area	1.1x10 ⁶ km ² + ²	2.2x10 ⁴ km ² ↔	0.02
Operation Time+	30 days / 3 years₽	3 years≠ 🕐	36 .5¢
Signal Direction*	Reflected @	Direct + Reflected .	1.50
Frequency ⁴²	200 MHz – 1GHz@	100-300 MHz+ 🕐	ę.
Integrated Signal Power®	70 <u>p</u> ₩⊷	130 pW+2 🙂	
Geo-magnetic Field₽	60 <u>uT</u> ₽	45 <u>uT</u> ₽	
Observation Height*	35 km₽	2 km¢	
Shower Height@	10 km₽	10 km₽	
Radio Path Lengthe	45/ <u>cosθ</u> km₽	12/ <u>cosθ</u> km≠ 🙄	
Energy Threshold	5x10 ¹⁸ eV.	1.4x10 ¹⁸ eV.	

うくで

3

48/58

Building Antenna

Summer intern student from FJU and NCTU making the antenna.

э

(日)

Testing Antenna

Figure : Summer intern students measure the antenna response.

50/58

э

LNAs of TAROGE

FoV of ANITA

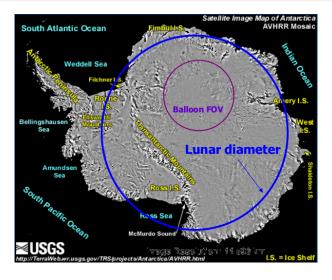
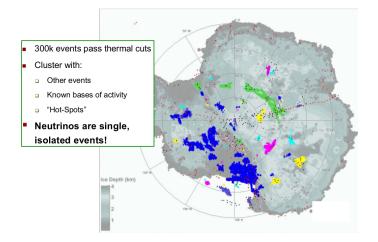
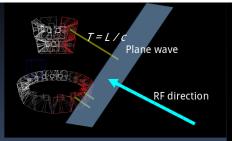
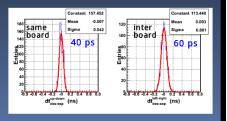



Figure : The radius of FoV is about 500km.

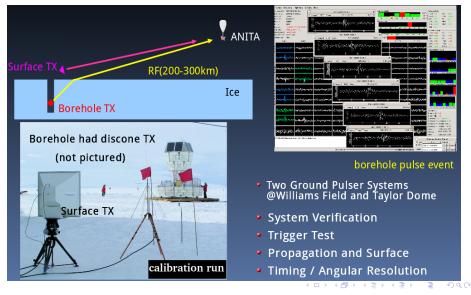
Man-Made EVENTs of ANITA

イロト イポト イヨト イヨト 二日

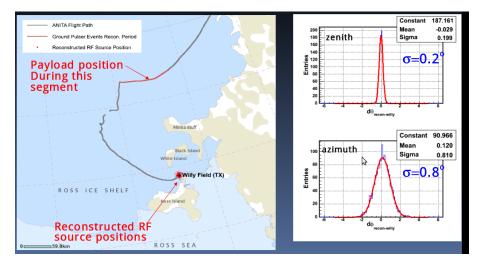

Event Reconstruction

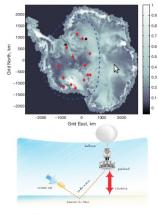

• Angular reconstruction is a crucial part in the ANITA data analysis.

- Powerful background rejection incoherent thermal events (99% of data set) anthropogenic RF events from existing bases air shower RF events.
- Neutrino reconstruction


neutrino direction information provides R and refraction angle for energy measurement.

- Angular reconstruction using timing.
- time resolution; 40-60 ps (time difference between channels)
- Achieved angular resolution;
 0.2° (zenith) and 0.8° (azimuth.)



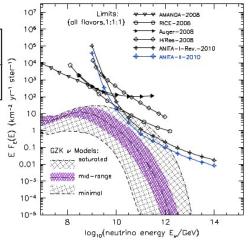

Ground Pulser System

Angular Resolution

Results of ANITA I & II (cosmic rays)

PRL 105, 151101 (2010)

- A combination of **vxB** and Fresnel coefficients result in air shower emission being horizontally polarised at the payload
- ANITA-I detected 16 isolated H-pol candidate UHECR events
- ANITA-II did not trigger on the H-pol channels -Doh!!
- Still detected 5 UHECR candidate events


イロト イポト イヨト イヨト

Results of ANITA I & II (Neutrino)

ANITA-II Results

Isolated v-pol events	1	
Expected background events	0.97 ± 0.42	

 Combine with efficiency to extract world's best limit on UHE neutrino flux above 10¹⁹eV

