From Bottom to Top The Particle-Astrophysics Experiments in LeCosPA

T.C Liu LeCosPA, National Taiwan University

October 2, 2013

< □ > < 凸

T.C Liu LeCosPA, National Taiwan University

From Bottom to Top

October 2, 2013 1 / 89

Outline: The Distribution of Experiments

ARA at -200m

The Askaryan Radio Array (ARA) Detecting Neutrinos in Antarctica

The ARA Collaboration

メロト メタトメミト メミト 三日

The Askaryan Radio Array (ARA) is an Ultra High Energy (UHE) Neutrino Detector at the South Pole

Auger and HiRes measurements of UHE cosmic rays consistent with GZK cut-off

Guaranteed GZK neutrino flux, but how large?

At energies above ~10^{19.5}eV cosmic rays will interact with CMB photons producing neutrinos

Process is known as the GZK effect

The Pierre Auger Collaboration (2010): Phys. Lett. B 685 (4–5): 239–246. HiRes Collaboration, Astropart. Phys. 32 (2009) 53.

イロト イポト イヨト イヨト

copy from Jonathan's slides

Coherent Radio Emission (Askaryan Radiation)

Figure: Detect radio emission from neutrino induced particle cascades in ice

イロト 不得 トイヨト イヨト 二日

Askaryan Radiation in SLAC

ARA-37

Figure: ARA 37 Layout, 37 Stations 200m below the surface~200km² coverage

イロト 不得下 イヨト イヨト 二日

DAQ System and Antrnna Cluster

ARA Sub-Station – DAQ

9/89

Build, Test, & Delivery

Figure: Building ARA2 & ARA3 last year

3.5 3

Drilling and Deployment

- Hot water drill creates 6" wide holes
- Holes are pumped dry
- Approaching $\sim 8\,\text{hr}\times\sim 1$ drill crew per 200 m hole
- Instrumentation deployed from greenhouse sled

イロト イポト イヨト イヨト

Simulation & Expected Sensitivity

- In-house tool called AraSim
- Simulates
 - \rightarrow neutrino interaction
 - \rightarrow radio emmission
 - ightarrow radio propagation
 - \rightarrow instrument response
 - \rightarrow thermal, instrument noise
 - \rightarrow hardware trigger
 - \rightarrow digitized waveforms
- Has been used to calculate trigger-level neutrino sensitivity

イロト イポト イヨト イヨト

э

II. TAROGE at 1200m

Outline: The Distribution of Experiments

II. TAROGE at 1200m

TAROGE at 1200~2000m

Cosmic Background Flux

Cosmic ray spectra of various experiment

Building Antenna

Summer intern student from FJU and NCTU makeing the antenna.

Testing Antenna

イロト イポト イモト イモト 一日

LNAs of TAROGE

メロト メタトメミト メミト 三日

III. ANITA at 37km

Outline: The Distribution of Experiments

III. ANITA at 37km

The ANtarctic Impulsive Transient Antenna

э

イロン イ理 とくほとう ほとう

Askaryan Radiation in SLAC

21/89

Flight Path

Over 65 days of flight over
 Over 35 million triggered
 Antarctica
 (noise) events

. (~ 22/89

III. ANITA at 37km

Rsults of ANITA II

PRL 105, 151101 (2010)

- A combination of vxB and Fresnel coefficients result in air shower emission being horizontally polarised at the payload
- ANITA-I detected 16 isolated H-pol candidate UHECR events
- ANITA-II did not trigger on the H-pol channels
 - –Doh!!
- Still detected 5 UHECR
 ^{23/89}

Rsults of ANITA II

ANITA-II Results

Isolated v-pol events	1	
Expected background events	0.97 ± 0.42	

 Combine with efficiency to extract world's best limit on UHE neutrino flux above 10¹⁹eV

IV. UFFO at 550km

Outline: The Distribution of Experiments

The History of GRB

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Measurement on the Earth

transmission of atmosphere

Measurement on the Earth

Absorption of atmosphere

・ロト・日本・山田・山田・山口・

28/89

The History of GRB

イロト 不得 トイラト イラト 一日

BATSE (Burst and Transient Source Experiment) The distribution of GRBs

2704 BATSE Gamma-Ray Bursts

The distribution of 2704 GRBs is isotropic, with no concentration towards the plane of the Milky Way,

The History of GRB

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Beppo-SAX (1997-2004) The afterflow of GRBs

Beppo-SAX satellite succeeded in detecting them in X-ray, which after a delay of 20 hours yield sufficiently accurate positions for large ground-based telescope.(William Herschel Telescope)

(日)

Gamma Ray Burst(GRB) Types & Basic Proprieties

- Typical energy : $10^{51} \sim 10^{54}$ ergs
- Duration : ms~minutes

3

(日)

IV. UFFO at 550km

The Potential of GRB

Most Distant of GRB Detected in 2009 (090423)

- The Most Luminous Events Seen in the Universe .
- The Most Distance of Objects until 2009. (Z~8.23)
- An Origin of Ultra-High Energy Neutrino.

The History of GRB

イロト 不得 トイラト イラト 一日

GRB Types & Basic Proprieties

- Short-hard GRBs (*T_{peak}* < 2 secs): This type originate from the mergers of binary neutron stars (NS-NS, BH-NS). [1, 2, 3, 4, 5]
- Long-soft GRBs : This type originate from the core collapse of massive stellar prorarity (hypernova). [6, 7, 8, 1, 2, 3]

New Pproject : UFFO pathfinder.

UFFO pathfinder Ultra Fast Flash Observatory

37/89

イロト 不得 トイラト イラト 一日

Current Limits of Rapid Response Measurements

Figure: The distribution of UVOT response time. Only 4 events less then 60 secs.

38/89

3

イロト イポト イヨト イヨト

Photon Measurements

Importance of Early Photon Measurements

Figure: Left Panel: The fastest-rising light curves are poorly sampled of the early time. Right Panel: The light curves of the decay class. Since the rise time is not known for the decay class bursts, the correlation cannot be tested among all these bursts.

III. Why should we need the new telescope

UFFO rotates the mirror instead of the spacescrft

UFFO pathfinder?

イロト 不得 トイヨト イヨト 二日

UFFO Collaboration

The Operation of UFFO

Figure: UFFO-Pathfinder

43/89

The Operation of UFFO

Figure: UFFO-Pathfinder

44/89

The operation of UFFO

Figure: UFFO-Pathfinder

The Operation of UFFO

Figure: UFFO-Pathfinder

46/89

The Operation of UFFO

Figure: UFFO-Pathfinder

47/89

The Operation of UFFO(UBAT part) UFFO Burst Alert & Trigger telescope

Figure: UBAT, sensitive energy range of 10 - 250 keV.

The Operation of UFFO(Coded Mask) UFFO Burst Alert & Trigger telescope

Figure: Code mask is made by 1 mm thickness tungsten and is pasted by 12.7μ m Kapton tape.

The Operation of UFFO (Coded Mask)

Gamma rays are stopped by mask and form the particular pattern on the detector plane.

イロト 不得 トイラト イラト 一日

The Operation of UFFO (SMT part)

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへ(?)

The Operation of UFFO (SMT part)

・ロト・日本・日本・日本・日本・日本

The Operation of UFFO (SMT part)

Intensified CCD

<□> <同> <同> < 目> < 目> < 目> < 目> < 目> □ □ ○ Q ○

The Location of UFFO

54/89

Lomonosov

Γ	Spacecraft & Builder	Lomonosov & FGUM-VNIIEM	
h	Launch Date	Apr. 2012	
	Orbit	Circular solar synchronous, height: 550 ± 10 km	
	Mass Total/Payload	450 kg / 120 kg	
	Mission Lifetime	3 years	
	Payload	TUS for UHECR (60kg) UFD Pathfinder for GRB (20kg) BORG for x-rays and gamma -rays detectors (16.5kg) ShOK for wide field optical camera (11kg) Magnetometer & EPD for energetic particle detector (5kg) DEPRON for control of radiation environment (5kg)	
Lorn		BDRO BDRO TUS telescop for UHEC	UFFO Pathfinder for GRB

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Works in Taiwan

- A. Thermal Vacuum and Vibration Test.
- B. MAPMT Calibration, YSO crystal intrinsic background measurement and simulation.
- $\bullet\,$ C. Cosmic background simulation. (cosmic ray, diffuse gamma ray, and e^- & $e^+)$
- D. Alignment and calibration of optical system.
- E. Damage test.

イロト 不得 トイヨト イヨト 二日

Vibration Test in NSPO (Launch Environment)

57/89

э

イロト イポト イヨト イヨト

Vibration Test in NSPO (Launch Environment)

Vibration Test in NSPO (Launch Environment)

Video!!! Video!!! Video!!!

59/89

3

イロト イポト イヨト イヨト

Thermal-vacuum test (space environment)

height:550 \pm 10km, period:90 minutes

60/89

イロト イポト イモト イモト 一日

Thermal-vacuum test (space environment)

The optical devices of UFFO operated successfully under the rigorous thermal-vacuum cycles, from $+40^{\circ}$ to -30° and 10^{-7} mbar.

イロト イボト イヨト イヨト

MAPMT and Crystal Test

Figure: Crystal and MAPMTs

62/89

MAPMT Calibration

64 channels MAPMT

Dark box

イロト イポト イヨト イヨト 二日

Background Simulation

- Cosmic ray.
- Diffuse gamma ray.
- $\bullet~e^+$ and $e^-.$
- Solar wind.

Cosmic Background Flux

Cosmic ray spectra of various experiment

UBAT Model Building

We build the upper UBAT system, which over the MAPMT plane by GEANT4.

・ロト ・四ト ・ヨト ・ヨト 三国

Diffuse Gamma Ray Background

10, 20, & 30keV from left to right

50 & 70keV

Diffuse Gamma Ray Background

$\mathbf{A} > \mathbf{B}$

Low energy photons stop by the wall.

68/89

イロト イポト イモト イモト 一日

30 keV Photon

シックの 単 本面を 本面を キョッ

69/89

Cosmic Ray Background Result

Shower events

70/89

э

イロト イボト イヨト イヨト

Diffuse Gamma Ray Background Result

э

(日)

Protons Hit 1mm Thickness Tungsten Mask

20 MeV 30 MeV 40 MeV

72/89
Photons Hit 1mm Thickness Tungsten Mask

The mask cannot stop the high energy photon. In other words, the upper limit of energy range is about 250 keV.

73/89

イロト イポト イヨト イヨト

Launch Schedule

Launch time : 2014, Auguest

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline: The Distribution of Experiments

S. AHMAD², K. AHN³, P. BARRILLON², S. BLIN-BONDIL², S. BRANDT⁴, C. BUDTZ-JØRGENSEN⁴, A.J. CASTRO-TIRADO⁵, P. CHEN, H.S. CHOI⁶, Y.J. CHOI⁷, P. CONNELL⁸, S. DAGORET-CAMPAGNE², C. DE LA TAILLE², C. EYLES⁸, B. GROSSAN⁹, I. HERMANN⁷, M.-H. A. HUANG¹⁰, S. JEONG¹¹, A. JUNG¹¹, J.E. KIM¹¹, S.H. KIM³, Y.W. KIM¹¹, J. LEE¹¹, H. LIM¹¹, E.V. LINDER9^{9,11}, T.C. LIU¹, NIELS LUND⁴, K.W. MIN⁷, G.W. NA¹¹, J.W. NAM¹, K. NAM¹¹, M.I. PANAYUK¹², I.H. PARK¹¹, V. REGLERO⁸, J.M. RODRIGO⁸, G.F. SMOOT^{9,11}, Y.D. SUH⁷, S. SVELITOV¹², N. VEDENKEN¹², M.-Z WANG¹, I. YASHIN¹², M.H. ZHAO¹¹

¹National Taiwan University, Taipei ²University of Paris-Sud 11, France ³Yonsei University, Seoul, Korea ⁴National Space Institute, Denmark ⁵Instituto de Astrofisica de Andalucia, Consejo Superior de Investigaciones Cientificas, Spain ⁶Korea Institute of Industrial Technology, Ansan, Korea ⁷Korea Advanced Institute of Science and Technology, Daejeon, Korea ⁸University of Valencia, Spain ⁹University of California, Berkeley, USA ¹⁰National United University, Miao-Li ¹¹Ewha Womans University, Seoul. Korea ¹²Moscow State University. Moscow, Russia

Cosmic Background Flux

Cosmic ray spectra of various experiment

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - めへぐ

Askaryan Effect

- Askaryan effect: Neutrinos with energy above \sim 30 PeV most efficiently detected with radio
- Delta-ray production, Compton scattering and positron annihilation give charge excess
- Compact bunch moves together
- Long wavelengths add coherently

(日)

The South Pole has the perfect combination of ice volume, ice RF-transparency, and existing science infrastructure for this experiment.

References

- http://www.ukaff.ac.uk/movies/nsmerger/
- 📔 Eichler D, Livio M, Piran T & Schramm D.1989. Nature 340:126
 - M´sz´ros , P and Rees, MJ, 1992, ApJ 397:570
 - 🔋 Narayan, R., Paczy´ ski , B. & Piran, T., 1992, Ap.J., 395, L8
- 📔 Paczy´ ski , B., 1986, ApJ, 308:L43
- http://0rz.tw/ty1Cl
- 📔 MacFadyen, A and Woosley, S, 1999, ApJ, 524:262
 - 🔋 Paczy´ ski , B., 1998, ApJ, 494:L45

イロト 不得下 イヨト イヨト 二日

Popham, R, et al, 1999, ApJ 518:356

- Woosley, S, 2005, in Proc. "Gamma Ray Bursts in the Swift Era", Washington, D.C., eds. S. Holt, et al, AIPC, in press
- Woosley, S., 1993, Ap.J., 405, 273

Massive Star Collapse (Long-Soft)

Types & Basic Proprieties

The massive star collapse.

イロト 不得下 イヨト イヨト 二日

Massive Star Collapse (Long-Soft) Types & Basic Proprieties

A massive star with 10-15 solar masses just before its core collapses during a gamma ray burst (GRB) event.

イロト 不得 トイラト イラト 一日

Massive Star Collapse (Long-Soft)

Types & Basic Proprieties

The core of a massive star just before the inner core (centre) collapses under its own weight in a gamma ray burst (GRB) event.

イロト イポト イヨト イヨト

Massive Star Collapse (Long-Soft)

Types & Basic Proprieties

The core of a massive star just after the inner core (centre) collapsed to form a black hole in a gamma ray burst (GRB) event.

Massive Star Collapse (Long-Soft) Types & Basic Proprieties

The black hole is ejecting the surrounding material as jets (white) from the poles of the black hole towards the star's surface.

Massive Star Collapse (Long-Soft) Types & Basic Proprieties

It says the spin or magnetic field of the black hole forms these jets that are the source of the gamma rays of the GRB, a massive short-lived burst of energy that is 100s of times brighter than an ordinary supernova

Jet from Massive star Collapse Types & Basic Proprieties

A relativistic jet 10 seconds after its creation. Colours, representing density from low to high, are blue, red and yellow.

The Mergers of Binary stars(Short-Hard) Types & Basic Proprieties

Crashing neutron stars can make gamma-ray burst jets

7.4 milliseconds

Simulation begins

21.2 milliseconds

26.5 milliseconds

Credit: NASA/AEI/ZIB/M. Koppitz and L. Rezzolla

UBAT Model Building

name	material	color	thickness
hopper	Aluminum	purple	3 <i>mm</i>
mask	Tungsten	gray	1 <i>mm</i>
kapton tape	kapton($C_{22}H_{10}N_2O_5$)	white	0.0127 <i>mm</i> (0.5 mil)
LYSO	LYSO	orange	1.96 <i>mm</i>
reflector	PEN($C_{14}H_{10}O_4$)	white	60µ <i>m</i>
electric box	Aluminum	purple	6.4 <i>mm</i>

◆□ > ◆圖 > ◆臣 > ◆臣 > □ 臣