From Bottom to Top
The Particle-Astrophysics Experiments in LeCosPA

T.C Liu
LeCosPA,
National Taiwan University

October 2, 2013
Outline: The Distribution of Experiments

- UFFO ~550km, Gamma Ray Burst
- ANITA ~40km Cosmic Rays, Neutrino
- ARA ~-200m, Neutrino
- TAROGE ~1km, Cosmic Rays

Google Earth
The Askaryan Radio Array (ARA) Detecting Neutrinos in Antarctica
The ARA Collaboration
The Askaryan Radio Array (ARA) is an Ultra High Energy (UHE) Neutrino Detector at the South Pole.

At energies above $\sim 10^{19.5} \text{eV}$ cosmic rays will interact with CMB photons producing neutrinos.

Process is known as the GZK effect.

Auger and HiRes measurements of UHE cosmic rays consistent with GZK cut-off

Guaranteed GZK neutrino flux, but how large?

copy from Jonathan's slides
Coherent Radio Emission (Askaryan Radiation)

Figure: Detect radio emission from neutrino induced particle cascades in ice
Askaryan Radiation in SLAC

PRL 99, 171101 (2007)
see also:
PRE 62, 8590 (2000),
PRL 86, 2802 (2001),
PRD 72, 023002 (2005)
PRD 74, 043002 (2006)

copy from Ryan's slides
Figure: ARA 37 Layout, 37 Stations 200m below the surface~200km² coverage
I. ARA at -200m

DAQ System and Antenna Cluster

ARA Sub-Station – DAQ

- 150-850 MHz bandwidth
- 3.2 GSa/s sampling (4x Nyquist)
- Low power consumption
- Autonomous data taking

Figure: Each station has 4 string with 16 channels
Build, Test, & Delivery

Figure: Building ARA2 & ARA3 last year
Drilling and Deployment

- Hot water drill creates 6” wide holes
- Holes are pumped dry
- Approaching ~ 8 hr × ~ 1 drill crew per 200 m hole
- Instrumentation deployed from greenhouse sled
Simulation & Expected Sensitivity

- In-house tool called AraSim
- Simulates
 - neutrino interaction
 - radio emission
 - radio propagation
 - instrument response
 - thermal, instrument noise
 - hardware trigger
 - digitized waveforms
- Has been used to calculate trigger-level neutrino sensitivity
II. TAROG at 1200m

Outline: The Distribution of Experiments

- UFFO ~550km, Gamma Ray Burst
- ANITA ~40km Cosmic Rays, Neutrino
- ARA ~200m, Neutrino
- TAROG ~1km, Cosmic Rays
TAROGE at 1200~2000m
Cosmic Background Flux

Cosmic ray spectra of various experiment
Building Antenna

Summer intern student from FJU and NCTU making the antenna.
II. TAROGE at 1200m

Testing Antenna
LNAs of TAROGE
Outline: The Distribution of Experiments

- **UFO ~550km, Gamma Ray Burst**
- **ANITA ~40km Cosmic Rays, Neutrino**
- **ARA ~200m, Neutrino**
- **TAROGE ~1km, Cosmic Rays**
The ANtarctic Impulsive Transient Antenna
Askaryan Radiation in SLAC

PRL 99, 171101 (2007)

see also:
PRE 62, 8590 (2000),
PRL 86, 2802 (2001),
PRD 72, 023002 (2005)
PRD 74, 043002 (2006)

copy from Ryan's slides
Flight Path

- Over 65 days of flight over Antarctica
- Over 35 million triggered (noise) events
Results of ANITA II

- A combination of vxB and Fresnel coefficients result in air shower emission being horizontally polarised at the payload
- ANITA-I detected 16 isolated H-pol candidate UHECR events
- ANITA-II did not trigger on the H-pol channels — Doh!!
- Still detected 5 UHECR candidate events
Results of ANITA II

• ANITA-II Results

<table>
<thead>
<tr>
<th>Isolated v-pol events</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected background events</td>
<td>0.97 ± 0.42</td>
</tr>
</tbody>
</table>

• Combine with efficiency to extract world’s best limit on UHE neutrino flux above 10^{19} eV
Outline: The Distribution of Experiments

- **UFFO ~550km, Gamma Ray Burst**
- **ANITA ~40km Cosmic Rays, Neutrino**
- **ARA ~200m, Neutrino**
- **TAROGF ~1km, Cosmic Rays**
The History of GRB

discovery of gamma rays
Measurement on the Earth

transmission of atmosphere
IV. UFFO at 550km

Measurement on the Earth

Absorption of atmosphere
The History of GRB
The distribution of 2704 GRBs is isotropic, with no concentration towards the plane of the Milky Way,
The History of GRB
Beppo-SAX (1997-2004)
The afterflow of GRBs

Beppo-SAX satellite succeeded in detecting them in X-ray, which after a delay of 20 hours yield sufficiently accurate positions for large ground-based telescope. (William Herschel Telescope)
Gamma Ray Burst (GRB)

Types & Basic Properties

- Typical energy: $10^{51} \sim 10^{54}$ ergs
- Duration: ms \sim minutes

![GRB Fireball Model Diagram]
The Potential of GRB
Most Distant of GRB Detected in 2009 (090423)

- The Most Luminous Events Seen in the Universe.
- The Most Distance of Objects until 2009. (Z~8.23)
The History of GRB

IV. UFFO at 550km

short and long GRBs
IV. UFFO at 550km

GRB
Types & Basic Properties

- **Short-hard GRBs** ($T_{\text{peak}} < 2$ secs): This type originate from the mergers of binary neutron stars (NS-NS, BH-NS). [1, 2, 3, 4, 5]
- **Long-soft GRBs**: This type originate from the core collapse of massive stellar proarity (hypernova). [6, 7, 8, 1, 2, 3]
New Project: UFFO pathfinder.

UFFO pathfinder

Ultra Fast Flash Observatory
Figure: The distribution of UVOT response time. Only 4 events less than 60 secs.
IV. UFFO at 550km

Photon Measurements
Importance of Early Photon Measurements

Figure: Left Panel: The fastest-rising light curves are poorly sampled of the early time. Right Panel: The light curves of the decay class. Since the rise time is not known for the decay class bursts, the correlation cannot be tested among all these bursts.
III. Why should we need the new telescope

SWIFT rotates entire spacecraft

UFFO rotates the mirror instead of the spacecraft
IV. UFFO at 550km

UFFO pathfinder?

- Observation of GRBs with early photons from 1 sec after trigger
- Two instruments: SMT (Slewing Mirror Telescope) for UV/optical afterglow, and UBAT (UFFO Burst Alert Trigger) for GRB localization & trigger
- Launched at Apr. 2012 onboard Lomonosov spacecraft
- Size/Mass/Power: 979(L)x409(W)x384(H) / 20kg / 20Watts

UFFO Pathfinder

UBAT (X-ray)

Coded Mask

Detectors

Electronics

ICCD Detector

SMT Primary

Beam Steering Mirror

SMT (UV/Optical)

DAQ
IV. UFFO at 550km

UFFO Collaboration
The Operation of UFFO

Figure: UFFO-Pathfinder
IV. UFFO at 550km

The Operation of UFFO

Figure: UFFO-Pathfinder
The Operation of UFFO (UBAT part)

UFFO Burst Alert & Trigger telescope

Figure: UBAT, sensitive energy range of 10 - 250 keV.
The Operation of UFFO (Coded Mask)

UFFO Burst Alert & Trigger telescope

Figure: Code mask is made by 1 mm thickness tungsten and is pasted by 12.7 µm Kapton tape.
The Operation of UFFO (Coded Mask)

Gamma rays are stopped by mask and form the particular pattern on the detector plane.
The Operation of UFFO (SMT part)
The Operation of UFFO (SMT part)
The Operation of UFFO (SMT part)

- Ritchey-Chretien type
- 100mm clear aperture
- 17 x 17 arcmin² FOV
- 4 x 4 arcsec² Pixel FOV

F/4 1.14
EFL= 1,140 mm
Angular resolution: sub-arcsec

Total mass = 953 g
Obscuration ratio(area) = 13%
180(H) x 235(W) x 180(L) mm³

Optomechanics

Intensified CCD
The Location of UFFO

- BDRG (gamma ray burst camera)
- SHOK
- Star tracker
- TUS (UHECR telescope)
- UFFO PathFinder
- Magnetometer & EPD
Lomonosov

<table>
<thead>
<tr>
<th>Spacecraft & Builder</th>
<th>Lomonosov & FGUM-VNIIEEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch Date</td>
<td>Apr. 2012</td>
</tr>
<tr>
<td>Orbit</td>
<td>Circular solar synchronous, height: 550 ± 10 km</td>
</tr>
<tr>
<td>Mass Total/Payload</td>
<td>450 kg / 120 kg</td>
</tr>
<tr>
<td>Mission Lifetime</td>
<td>3 years</td>
</tr>
<tr>
<td>Payload</td>
<td>1. TUS for UHECR (60kg) 2. UFFO Pathfinder for GRB (20kg) 3. BDRG for x-rays and gamma-rays detectors (16.5kg) 4. SHOK for wide field optical camera (11kg) 5. Magnetometer & EPD for energetic particle detector (5kg) 6. DEPRON for control of radiation environment (5kg)</td>
</tr>
</tbody>
</table>

TUS telescope for UHECR

Lomonosov at launch

UFFO Pathfinder for GRB

SHOK

BDRG
IV. UFFO at 550km

Works in Taiwan

- A. Thermal Vacuum and Vibration Test.
- B. MAPMT Calibration, YSO crystal intrinsic background measurement and simulation.
- C. Cosmic background simulation. (cosmic ray, diffuse gamma ray, and e^- & e^+)
- D. Alignment and calibration of optical system.
- E. Damage test.
Vibration Test in NSPO (Launch Environment)
Vibration Test in NSPO (Launch Environment)
Vibration Test in NSPO (Launch Environment)

Video!!!

Video!!!

Video!!!
Thermal-vacuum test (space environment)

height: 550 ± 10 km, period: 90 minutes
Thermal-vacuum test (space environment)

The optical devices of UFFO operated successfully under the rigorous thermal-vacuum cycles, from $+40^\circ$ to -30° and 10^{-7} mbar.
MAPMT and Crystal Test

Figure: Crystal and MAPMTs
IV. UFFO at 550km

MAPMT Calibration

64 channels MAPMT Dark box
Background Simulation

- Cosmic ray.
- Diffuse gamma ray.
- e^+ and e^-.
- Solar wind.
Cosmic Background Flux

Cosmic ray spectra of various experiment
UBAT Model Building

We build the upper UBAT system, which over the MAPMT plane by GEANT4.
Diffuse Gamma Ray Background

10, 20, & 30keV from left to right

50 & 70keV
Diffuse Gamma Ray Background

Low energy photons stop by the wall.
30 keV Photon
Cosmic Ray Background Result

Shower events
IV. UFFO at 550km

Diffuse Gamma Ray Background Result

[Images of 2D and 3D visualizations of Hits_LYSO data with associated tables showing entries, mean x, mean y, RMS x, and RMS y values.]
IV. UFFO at 550km

Protons Hit 1mm Thickness Tungsten Mask

20 MeV 30 MeV 40 MeV
Photons Hit 1mm Thickness Tungsten Mask

The mask cannot stop the high energy photon. In other words, the upper limit of energy range is about 250 keV.
Launch Schedule

Launch time: 2014, August
Outline: The Distribution of Experiments

- **UFFO ~ 550km, Gamma Ray Burst**
- **ANITA ~ 40km Cosmic Rays, Neutrino**
- **ARA ~ 200m, Neutrino**
- **TAROGF ~ 1km, Cosmic Rays**

¹ National Taiwan University, Taipei ²University of Paris-Sud 11, France ³Yonsei University, Seoul, Korea ⁴National Space Institute, Denmark ⁵Instituto de Astrofisica de Andalucia, Consejo Superior de Investigaciones Cientificas, Spain ⁶Korea Institute of Industrial Technology, Ansan, Korea ⁷Korea Advanced Institute of Science and Technology, Daejeon, Korea ⁸University of Valencia, Spain ⁹University of California, Berkeley, USA ¹⁰National United University, Miao-Li ¹¹Ewha Womans University, Seoul, Korea ¹²Moscow State University, Moscow, Russia
Cosmic Background Flux

Cosmic ray spectra of various experiment
Askaryan Effect

- Askaryan effect: Neutrinos with energy above ~ 30 PeV most efficiently detected with radio
- Delta-ray production, Compton scattering and positron annihilation give charge excess
- Compact bunch moves together
- Long wavelengths add coherently

The South Pole has the perfect combination of ice volume, ice RF-transparency, and existing science infrastructure for this experiment.
References

http://www.ukaff.ac.uk/movies/ns merger/

http://0rz.tw/ty1Cl

Massive Star Collapse (Long-Soft)
Types & Basic Properties

The massive star collapse.
Massive Star Collapse (Long-Soft)
Types & Basic Properties

A massive star with 10-15 solar masses just before its core collapses during a gamma ray burst (GRB) event.
Massive Star Collapse (Long-Soft)
Types & Basic Properties

The core of a massive star just before the inner core (centre) collapses under its own weight in a gamma ray burst (GRB) event.
Massive Star Collapse (Long-Soft)
Types & Basic Properties

The core of a massive star just after the inner core (centre) collapsed to form a black hole in a gamma ray burst (GRB) event.
Massive Star Collapse (Long-Soft)
Types & Basic Properties

The black hole is ejecting the surrounding material as jets (white) from the poles of the black hole towards the star’s surface.
Massive Star Collapse (Long-Soft)
Types & Basic Properties

It says the spin or magnetic field of the black hole forms these jets that are the source of the gamma rays of the GRB, a massive short-lived burst of energy that is 100s of times brighter than an ordinary supernova.
Jet from Massive star Collapse
Types & Basic Properties

A relativistic jet 10 seconds after its creation. Colours, representing density from low to high, are blue, red and yellow.
The Mergers of Binary stars (Short-Hard)
Types & Basic Properties
UBAT Model Building

<table>
<thead>
<tr>
<th>name</th>
<th>material</th>
<th>color</th>
<th>thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>hopper</td>
<td>Aluminum</td>
<td>purple</td>
<td>3 mm</td>
</tr>
<tr>
<td>mask</td>
<td>Tungsten</td>
<td>gray</td>
<td>1 mm</td>
</tr>
<tr>
<td>kapton tape</td>
<td>kapton (\text{C}{22}\text{H}{10}\text{N}{2}\text{O}{5})</td>
<td>white</td>
<td>0.0127 mm (0.5 mil)</td>
</tr>
<tr>
<td>LYSO</td>
<td>LYSO</td>
<td>orange</td>
<td>1.96 mm</td>
</tr>
<tr>
<td>reflector</td>
<td>PEN (\text{C}{14}\text{H}{10}\text{O}_{4})</td>
<td>white</td>
<td>60 (\mu m)</td>
</tr>
<tr>
<td>electric box</td>
<td>Aluminum</td>
<td>purple</td>
<td>6.4 mm</td>
</tr>
</tbody>
</table>