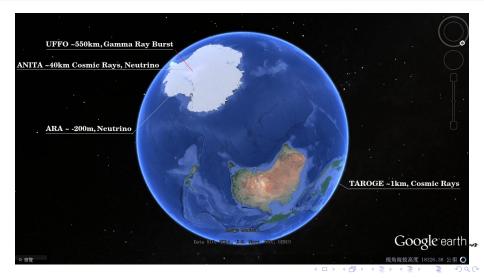

Neutrino Experiments at Antarctica



T.C Liu LeCosPA, National Taiwan University

Neutrino Experiments at Antarctica

May 7, 2015 1 / 57

Locations: The Participated Experiments of LeCosPA Center

Outline:

- Introduction of Cosmic rays & Neutrino
- Experiments ANITA
- Experiments ARA
- Results and Future plans

Neutrinos

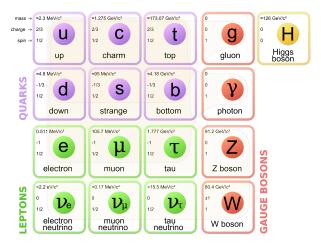


Figure : Neutrino only involves in weak interactions.

Fundamental Forces

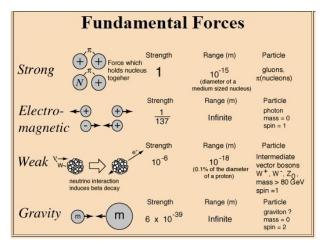


Figure : Fundamental Forces.

5/57

Cross Section of Neutrino



Figure : Neutrino cross section. [Phys.Rev. D83 (2011) 014014]

э

イロト イボト イヨト イヨト

Interaction Length of Neutrinos

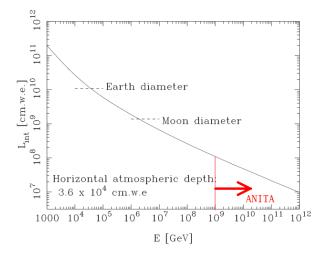
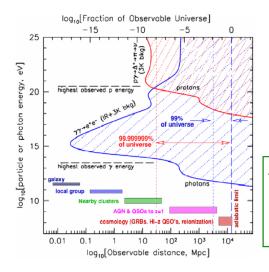
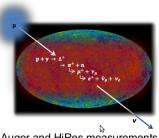



Figure : The neutrino interaction length (in centimeters water equivalent distance) [Astropart.Phys. 35 (2012) 383-395]

3

Neutrinos: The Ideal UHE Messenger

- Photons lost above 100 TeV (pair production on CMB & IR)
- Protons and Nuclei suffer curvature induced by B fields
- But: we know there are sources up to 10²⁰ eV!!

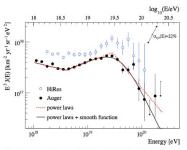

UHE Neutrino Detectors Study:

- Highest energy observation of extragalactic sources
- Very distant sources
- Deep into opaque sources

イロト イポト イヨト イヨト

from A. G. Vieregg

UHE Neutrino & GZK Effect



Auger and HiRes measurements of UHE cosmic rays consistent with GZK cut-off

Guaranteed GZK neutrino flux, but how large?

At energies above ~10^{19.5}eV cosmic rays will interact with CMB photons producing neutrinos

Process is known as the GZK effect

The Pierre Auger Collaboration (2010): Phys. Lett. B 685 (4-5): 239-246. HiRes Collaboration, Astropart. Phys. 32 (2009) 53.

イロト 不得 トイヨト イヨト

copy from Jonathan's slides

3

GZK Radius

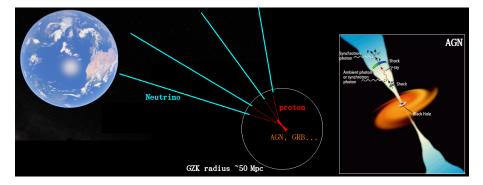
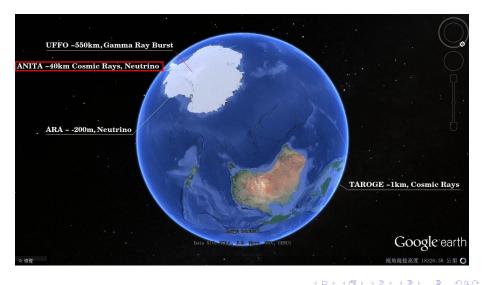


Figure : The UHE neutrinos can point back to the original UHE source without bending of B field.


Short Summary: Why UHE Neutrinos

- Trace particle UHECR hyper-accelerators to very early epochs Even at z[~]10 or more, GZK neutrino energies peak at 10-100 PeV they all point back directly to the UHECR sources
- Their flux is constrained by UHECR sources, once determined Can become a quasi-isotropic "test beam" of UHE neutrinos
- Neutrino Flavor physics

Can encode source information by flavor ratio, even new physics (neutrino decay?)

イロト 不得 トイラト イラト 一日

The ANtarctic Impulsive Transient Antenna (ANITA)

UHE Neutrino Interact with Earth

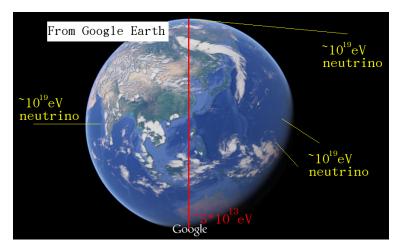


Figure : The interaction length of neutrino with $5*10^{13}$ eV is close to diameter of Earth. The interaction length for 10^{19} eV neutrino is $6*10^7~g/cm^2$

The ANITA Concept

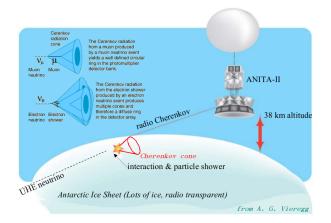


Figure : Cherenkov radiation is electromagnetic radiation emitted when a charged particle passes through a dielectric medium at a speed greater than the velocity of light in that medium.

イロト 不得 トイラト イラト 一日

Coherent Radio Emission (Askaryan Radiation)

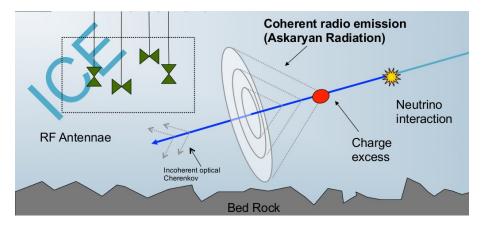
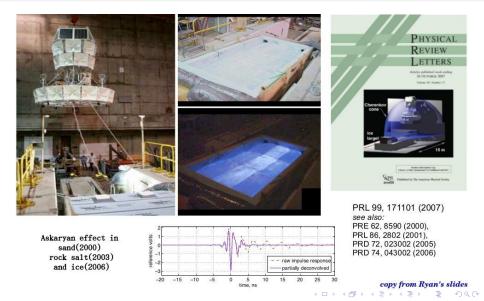
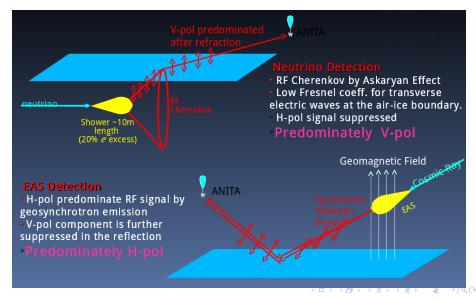




Figure : Detect radio emission from neutrino induced particle cascades in ice

Askaryan Radiation Experiment in SLAC

Signal Type (neutrino VS. EAS)

Setup of T-510 (Geo-Synchrotron Radiation)

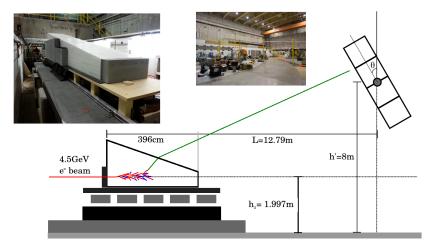


Figure : Electron beam creates secondary cascades in a 4 m long high-density polyethylene(HDPE) target placed in a magnetic field(up to 1000G).

(日)

ANITAs

Figure : Before 2010, we already launched 2 balloons in Antarctica.

10) (0) (2) (2) (2) (2)

Flight Path of ANITA & ANITA-II

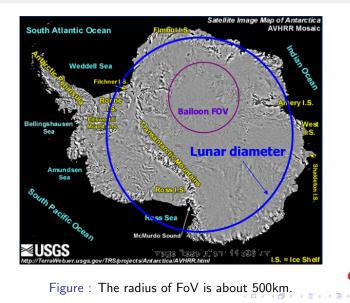
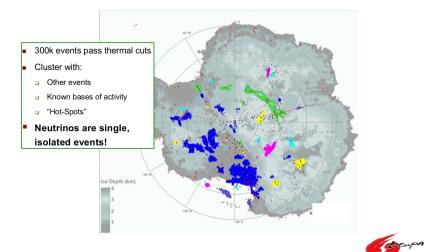

 Over 65 days of flight over
 Over 35 million triggered (noise) events Antarctica copy from Ryan's slides

Figure : flight path of ANITA & ANITA- II.

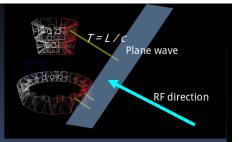
FoV of ANITA

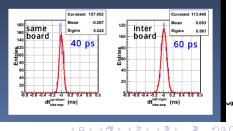


21/57

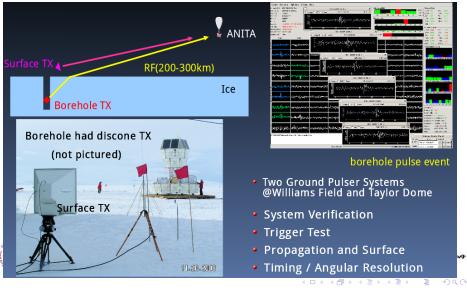
Man-Made EVENTs of ANITA

< □ > < □ > < □ > < □ > < □ >

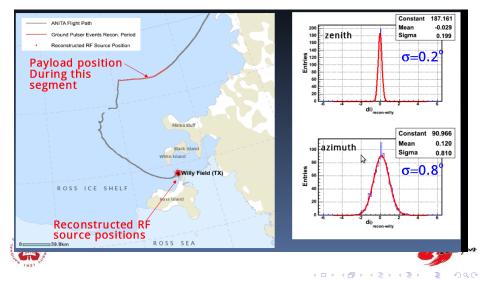

Event Reconstruction


• Angular reconstruction is a crucial part in the ANITA data analysis.

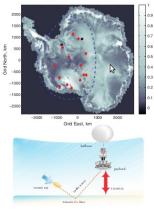
- Powerful background rejection incoherent thermal events (99% of data set) anthropogenic RF events from existing bases air shower RF events.
- Neutrino reconstruction


neutrino direction information provides R and refraction angle for energy measurement.

- Angular reconstruction using timing.
- time resolution; 40-60 ps (time difference between channels)
- Achieved angular resolution;
 0.2° (zenith) and 0.8° (azimuth.)



Ground Pluser System


Angular Resolution

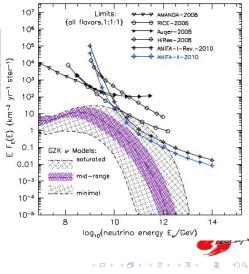
25/57

Results of ANITA I & II (cosmic rays)

PRL 105, 151101 (2010)

- A combination of **vxB** and Fresnel coefficients result in air shower emission being horizontally polarised at the payload
- ANITA-I detected 16
 isolated H-pol candidate
 UHECR events
- ANITA-II did not trigger on the H-pol channels -Doh!!
- Still detected 5 UHECR candidate events

(日)


The set of the set of

Results of ANITA I & II (Neutrino)

ANITA-II Results

Isolated v-pol events	1	
Expected background events	0.97 ± 0.42	

 Combine with efficiency to extract world's best limit on UHE neutrino flux above 10¹⁹eV

The ANtarctic Impulsive Transient Antenna (ANITA-III)

Figure : ANITA-III instrument, 2014-1015.

Flight Path of ANITA-III 2014-2015

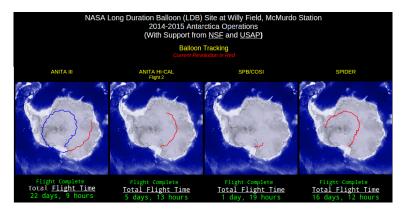
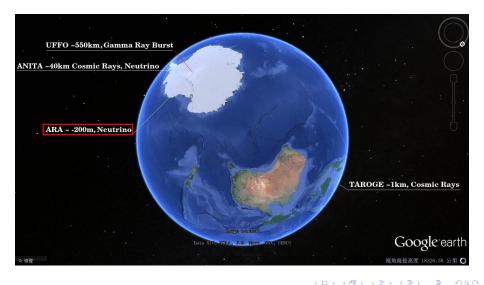


Figure : Flight path of ANITA III.

http://www.csbf.nasa.gov/antarctica/payloads.htm

イロト 不得下 イヨト イヨト 二日

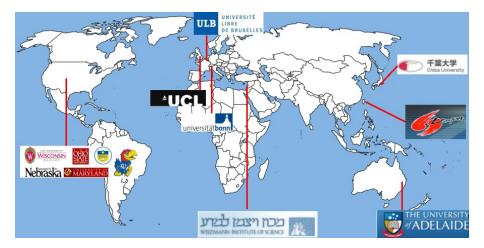
Time for video


Time for Video !!!

・ロト・日本・日本・日本・日本・日本

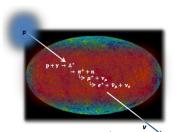
30/57

ARA at -200m



ARA at -200m

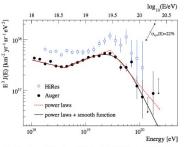
The Askaryan Radio Array (ARA) Detecting Neutrinos in Antarctica



The ARA Collaboration

メロト メタトメミト メミト 三日

The Askaryan Radio Array (ARA) is an Ultra High Energy (UHE) Neutrino Detector at the South Pole



Auger and HiRes measurements of UHE cosmic rays consistent with GZK cut-off

Guaranteed GZK neutrino flux, but how large?

At energies above ~10^{19.5}eV cosmic rays will interact with CMB photons producing neutrinos

Process is known as the GZK effect

The Pierre Auger Collaboration (2010): Phys. Lett. B 685 (4–5): 239–246. HiRes Collaboration, Astropart. Phys. 32 (2009) 53.

イロト イポト イヨト イヨト

copy from Jonathan's slides

ARA-37

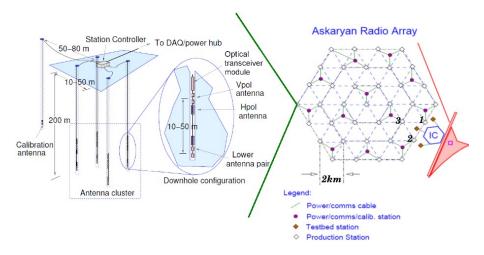


Figure : ARA 37 Layout, 37 Stations 200m below the surface~200km² coverage

イロト 不得下 イヨト イヨト 二日

DAQ System and Antenna Cluster

ARA Sub-Station – DAQ

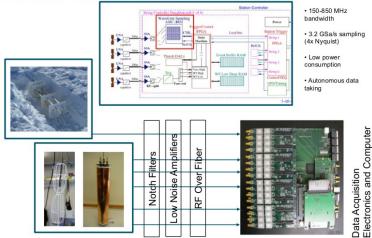
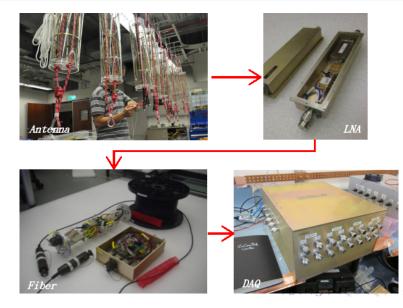



Figure : Each station has 4 string with 16 channels

36/57

DAQ System and Antenna Cluster

37/57

Build & Test in Taiwan

Figure : Building ARA2 & ARA3 last year

メロト メタトメミト メミト 三日

Delivery

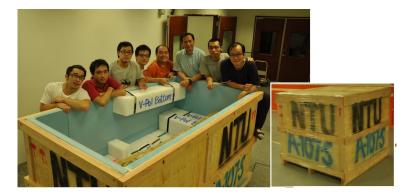
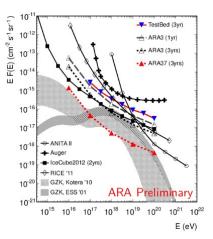


Figure : delivery for 2 stations

39/57

Drilling and Deployment

- Hot water drill creates 6" wide holes
- Holes are pumped dry
- Approaching $\sim 8\,\text{hr}\times\sim 1$ drill crew per 200 m hole
- Instrumentation deployed from greenhouse sled

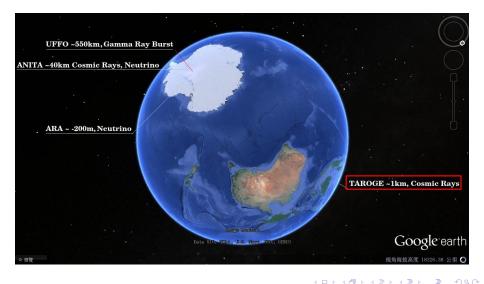


(日)

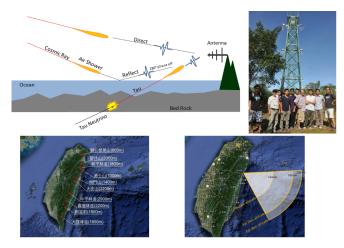
Simulation & Expected Sensitivity

- In-house tool called AraSim
- Simulates
 - \rightarrow neutrino interaction
 - \rightarrow radio emmission
 - ightarrow radio propagation
 - \rightarrow instrument response
 - \rightarrow thermal, instrument noise
 - ightarrow hardware trigger
 - \rightarrow digitized waveforms
- Has been used to calculate trigger-level neutrino sensitivity

イロト イポト イヨト イヨト


э

Future Plans

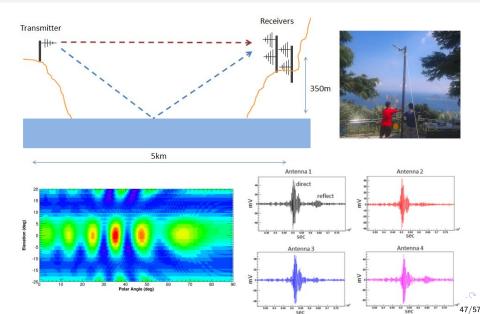

- ANITA-4 (2017): Neutrino & cosmic rays
- SWORD(TBD) :cosmic rays
- ARA37 (within 10 years): Neutrino
- TAROGE-10 (within 4 years): Neutrino & cosmic rays

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三

Outline: The Distribution of Experiments

Taiwan Astroparticle Radiowave Observatory for Geo-synchrotron Emission(TAROGE)

TAROGE I at He-Ping



イロト イヨト イヨト イヨト

TAROGE at 1200~2000m

Reflection Test of TAROGE

The Synoptic Wideband Orbiting Radio Detector (SWORD)

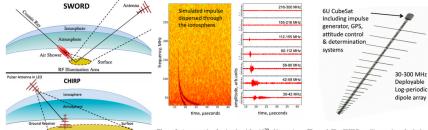
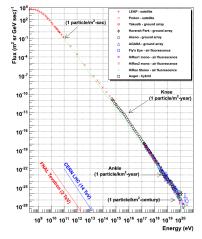


Figure 1: The top figure outlines the SWORD mission concept. The UHECR interacts in the atmosphere to produce an extended air shower. The geo-magnetic field separates the provinces and alextone in the shower to produce a gen-

Radio Illumination

Figure 2: An example of a simulated 2×10^{20} eV cosmic ray induced geo-synchrotron radio impulse after propagation through an ionospheric profile with 14 TECU. The spectrogram of the signal (left) shows the effect of dispersion and birefrignence (Equation 1) for a signal detected by a linearly polarized antenna. Waveforms (right) for the bands used in SWMPD shows the processively larger amount of Figure 4: The CHIRP satellite consists of a deployable logperiodic dipole antenna that is 4.7 meters in length with 3.7 meter longest dipole element. The antenna is stowed in a 1.5U volume of the 6U CubeSat bus, which contains all the major subsystems needed for the mission.

イロト 不得 トイラト イラト 一日


Future Plans

- ANITA-4 (2017): Neutrino & cosmic rays
- SWORD(TBD) :cosmic rays
- ARA37 (within 10 years): Neutrino
- TAROGE-10 (within 4 years): Neutrino & cosmic rays

Thank you!

Cosmic Background Flux

Cosmic ray spectra of various experiment

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つくぐ

Building Antenna

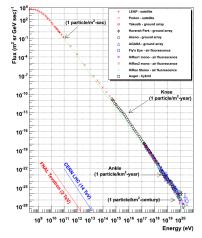
Summer intern student from FJU and NCTU makeing the antenna.

(日)

Testing Antenna



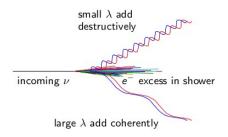
Figure : Summer intern students measure the antenna response.


52/57

э

LNAs of TAROGE

Cosmic Background Flux



Cosmic ray spectra of various experiment

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つくぐ

Askaryan Effect

- Askaryan effect: Neutrinos with energy above $\sim 30 \text{ PeV}$ most efficiently detected with radio
- Delta-ray production, Compton scattering and positron annihilation give charge excess
- Compact bunch moves together
- Long wavelengths add coherently

イロト イポト イヨト イヨト

The South Pole has the perfect combination of ice volume, ice RF-transparency, and existing science infrastructure for this experiment.

References

- http://www.ukaff.ac.uk/movies/nsmerger/
- 🔋 Eichler D, Livio M, Piran T & Schramm D.1989. Nature 340:126
- M´sz´ros , P and Rees, MJ, 1992, ApJ 397:570
- 🔋 Narayan, R., Paczy´ ski , B. & Piran, T., 1992, Ap.J., 395, L8
- Paczy´ ski , B., 1986, ApJ, 308:L43
- http://0rz.tw/ty1Cl
- MacFadyen, A and Woosley, S, 1999, ApJ, 524:262
- 🔋 Paczy´ ski , B., 1998, ApJ, 494:L45

イロト 不得 トイヨト イヨト 二日

Popham, R, et al, 1999, ApJ 518:356

- Woosley, S, 2005, in Proc. "Gamma Ray Bursts in the Swift Era", Washington, D.C., eds. S. Holt, et al, AIPC, in press
- Woosley, S., 1993, Ap.J., 405, 273

イロト 不得 トイヨト イヨト 二日