General Physics I

Mechanics, optics, thermal dynamics, and other basic fundamental things.

Review:

A **conservative force** is a force whose work done is *independent* of the path taken and depends *only* on the *initial* and final positions.

Review:

Curl-less field. The following conditions are equivalent

(a)
$$\overrightarrow{\nabla} \times \overrightarrow{F} = 0$$
, everywhere

- (b) $\int_{c}^{b} \overrightarrow{F} \cdot d\overrightarrow{l}$ is indecent of path, for any given end points
- (c) $\oint \overrightarrow{F} \cdot d\overrightarrow{l} = 0$, for any closed loop
- (d) \overrightarrow{F} is the gradient of some scalar, $\overrightarrow{F} = -\overrightarrow{\nabla} U$

U is the scalar potential of the field \overrightarrow{F}

The period of revolution T : considering the $s=2\pi r$

$$T = \frac{1}{f}$$
 The frequency: f $x(t) = x_m \cos(\omega t + \phi)$

The period of revolution T : considering the $s=2\pi r$

$$x(t) = x_m \cos(\omega t + \phi) \to x_m \cos(\omega t + \omega T)$$

$$= x_m \cos(\omega t)$$

$$\omega T = 2\pi$$

$$\omega = \frac{2\pi}{T} = 2\pi f$$

$$x(t) = x_m \cos(\omega t + \phi)$$

$$v(t) = -x_m \omega \sin(\omega t + \phi)$$

$$a(t) = -x_m \omega^2 \cos(\omega t + \phi)$$
$$= -\omega^2 x(t)$$

Hooke's law F = -kx

Lecture VI: Energy of SHM

Hooke's law

$$F = -kx$$

$$x(t) = x_m \cos(\omega t + \phi) \quad v(t) = -x_m \omega \sin(\omega t + \phi)$$
$$a(t) = -x_m \omega^2 \cos(\omega t + \phi)$$

Lecture VI: Torsion pendulum

$$\tau = -k\theta$$

$$-k\theta = I\ddot{\theta}$$

$$\theta = A\cos(\sqrt{\frac{k}{I}}t - \phi)$$

$$\omega = \sqrt{\frac{k}{I}} = 2\pi f$$

$$f = \frac{1}{2\pi}\sqrt{\frac{k}{I}} \qquad T = 2\pi\sqrt{\frac{I}{k}}$$

Lecture VI: Pendulum

$$\tau = -L(F_g \sin \theta)$$

$$-L(mg\sin\theta) \sim -L(mg\theta) = I\ddot{\theta}$$

$$\theta = A\cos(\sqrt{\frac{mgL}{I}}t - \phi)$$

$$\omega = \sqrt{\frac{mgL}{I}} = 2\pi f$$

$$f = \frac{1}{2\pi} \sqrt{\frac{mgL}{I}} \qquad T = 2\pi \sqrt{\frac{I}{mgL}}$$

Lecture VI: Forced oscillation

Consider a external force $\overrightarrow{F}_{ex}(t)$ acts on the system

$$ma = \sum \overrightarrow{F} = -kx - \overrightarrow{F}_{ex}(t)$$

$$\overrightarrow{F}_{ex}(t) = F_o \cos(\omega t)$$

$$m\ddot{x} = -kx - F_o \cos(\omega t)$$
 $x(t) = A_o \cos(\omega t + \phi)$

$$m\omega^2 A_o \cos(\omega t) = -kA_o \cos(\omega t) - F_o \cos(\omega t)$$

$$k = m\omega_o^2 \qquad A_o = \frac{F_o}{m(\omega_o^2 - \omega^2)}$$

Lecture VI: damped motion

$$ma = \overrightarrow{F} = -kx - bv$$

Lecture VI: Forced damped motion

$$ma = \sum \overrightarrow{F} = -kx - bv - \overrightarrow{F}_{ex}$$

$$\overrightarrow{F}_{ex}(t) = F_o \cos(\omega t)$$

