General Physics I

Mechanics, optics, thermal dynamics, and other basic fundamental things.

Lecture V: Rotation

Position Displacement Velocity Acceleration

Linear

X

 Δx

 \overrightarrow{a}

Angular

 $\Delta \theta$

 ω

 α

Relating the linear and angular variables

$$s = \Delta \theta r$$

$$\frac{ds}{dt} = \frac{d\theta}{dt}r \qquad \frac{dv}{dt} = \frac{d\omega}{dt}r$$

$$v = \omega r$$
 $a = \alpha r$

$$a = \alpha \gamma$$

Lecture V: Rotation

The period of revolution T : considering the $s=2\pi r$

$$T = \frac{2\pi r}{v} = \frac{2\pi r}{\omega r}$$

$$= \frac{2\pi r}{\omega}$$

$$= \frac{2\pi r}{\omega}$$

Lecture V: Kinetic Energy of Rotation

Rotation inertia $I = \sum_{i=1}^{n} m_i r_i^2$

$$= \sum_{i=1}^{2} \frac{m_i(\omega r_i)^2}{2} = \frac{\left(\sum_{i=1}^{2} m_i r_i^2\right) \omega^2}{2}$$

$$= \sum_{i=1}^{2} \frac{m_i r_i^2 \omega^2}{2} = \frac{I\omega^2}{2}$$

Lecture V: Rotation Inertia $I = \sum_{i=1}^{n} m_i r_i^2$

$$K = \frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2} + \frac{m_3 v_3^2}{2} + \dots$$

$$= \frac{\sum m_i v_i^2}{2}$$

$$= \sum \frac{m_i (\omega r_i)^2}{2} = \frac{(\sum m_i r_i^2) \omega^2}{2}$$

$$= \frac{\sum m_i r_i^2 \omega^2}{2} = \frac{I\omega^2}{2}$$

Lecture V: parallel-Axis Theorem

$$I = \int r^2 dm = \int [(x-a)^2 + (y-b)^2] dm$$

$$= \int [(x^2 + y^2) - 2ax - 2by + (a^2 + b^2)]dm$$

$$= [r^2 + h^2]dm = I_{com} + Mh^2$$

Lecture V: Rotation Inertia

$$I = \sum_{i=1}^{n} m_{i} r_{i}^{2}$$

$$= \int_{1}^{1} r^{2} dm$$

$$r^{2} dm$$

Lecture V: Torque

Torque is a ability to rotate the body

$$\tau = \vec{r} \times \vec{F} = rF \sin \phi = rF \cos \theta$$

Lecture V: Net Torque

$$\tau_{net} = r_1 \overrightarrow{F}_1 \sin \theta_1 + r_2 \overrightarrow{F}_2 \sin \theta_2 + r_3 \overrightarrow{F}_3 \sin \theta_3$$

 \overrightarrow{F}_{3}

Lecture V: Newton's second law for rotation

Start from Newton's second law: $F_{net} = ma$

Lecture V: Work and rotational kinetic energy

$$\Delta K = K_f - K_i = \frac{1}{2} I \omega_f^2 - \frac{1}{2} I \omega_i^2 = W$$

$$W = \int \overrightarrow{F} dx = \int \overrightarrow{F}_t r d\theta = \int \tau d\theta$$

$$= \tau(d\theta_f - d\theta_i)$$

$$P = \frac{dW}{dt} = \tau (d\theta_f - d\theta_i)/dt = \tau \omega$$

Lecture V: Rolling

$$s = \Delta \theta r$$

$$s = \Delta \theta r$$

$$v_{com} = \omega r$$

Lecture V: Kinetic Energy of Rolling

$$s = \Delta \theta r$$

$v_{com} = \omega r$

$$I = I_{com} + Mh^2$$

$$h = R$$

$$K = \frac{1}{2}I_P\omega^2$$

$$= \frac{1}{2}(I_{com} + MR^2)\omega^2$$

$$=\frac{1}{2}(I_{com}\omega^2 + Mv^2)$$

Lecture V: Torque & Angular momentum

$$l \equiv \vec{r} \times \vec{p}$$

$$= m(\vec{r} \times \vec{v})$$

$$= mrv \sin \phi$$

$$\tau = \vec{r} \times \vec{F} = \vec{r} \times m \vec{a}$$

$$= \vec{r} \times m \vec{a} + \vec{v} \times m \vec{v}$$

$$= \vec{r} \times m \frac{d\vec{v}}{dt} + \frac{d\vec{r}}{dt} \times m \vec{v}$$

$$= \frac{d}{dt} (\vec{r} \times \vec{p}) \equiv \frac{d}{dt} (\vec{l})$$

$$= \frac{d}{dt}(\overrightarrow{r} \times \overrightarrow{p}) \equiv \frac{d}{dt}(1)$$

Lecture V: Torque & Angular momentum

$$l \equiv \vec{r} \times \vec{p}$$

$$= m(\vec{r} \times \vec{v})$$

$$= mrv \sin \phi$$

$$\tau_{net} = \sum_{i} \vec{r}_{i} \times \vec{F}_{i} = m \sum_{i} \vec{r}_{i} \times \vec{a}_{i}$$

$$= m \sum_{i} \vec{r}_{i} \times \frac{d\vec{v}_{i}}{dt} + \frac{\vec{v}_{i}}{dt} \times \vec{v}_{i} = 0$$

$$= m \sum_{i} \vec{r}_{i} \times \frac{d\vec{v}_{i}}{dt} + \frac{d\vec{r}_{i}}{dt} \times \vec{v}$$

$$= \vec{r} \times \frac{dM\vec{v}}{dt} + \frac{d\vec{r}}{dt} \times M\vec{v}$$

$$= \frac{d}{dt} (\vec{r}_{i} \times \vec{p}_{i}) \equiv \frac{d}{dt} (\vec{L})$$

Lecture V: Conservation of Momentum

If no net external torque acts on the system:

$$\frac{d}{dt}(\vec{L}) = 0$$
, L= constant

Net angular momentum \overline{L}_i at initial time

= net angular momentum \overrightarrow{L}_f at later time

$$\overrightarrow{L}_i = \overrightarrow{L}_f$$
 (isolated system)

Inverse square law: point-source radiation into three-dimensional space.

Light Source Lumens Lumens Lumens

point source case

Line source case

Plane source case

$$F = \frac{Gm_1m_2}{r^2}\hat{r}$$

Altitude	a_g (m/s ²)	Altitude	
(km)	(m/s ²)	Example	
		Mean Earth	
0	9.83	surface	
8.8	9.80	Mt. Everest	
		Highest crewed	
36.6	9.71	balloon	
		Space shuttle	
400	8.70	orbit	
		Communications	
35 700 0.225		satellite	

$$F = \frac{Gm_1m_2}{r^2}\hat{r}$$

$$F_N - ma_g = m(-\omega R^2)$$

$$mg = ma_g + m(-\omega R^2)$$

Gradational force

Weight

Centripetal force

Lecture VI: Escape Speed

$$U = -\frac{GMm}{r}$$

$$\frac{1}{2}mv^2 = \frac{GMm}{r}$$

Body	Mass (kg)	Radius (m)	Escape Speed (km/s)
Ceres ^a	1.17×10^{21}	3.8×10^{5}	0.64
Earth's moon ^a	7.36×10^{22}	1.74×10^{6}	2.38
Earth	5.98×10^{24}	6.37×10^{6}	11.2
Jupiter	1.90×10^{27}	7.15×10^{7}	59.5
Sun	1.99×10^{30}	6.96×10^{8}	618
Sirius \mathbf{B}^b	2×10^{30}	1×10^7	5200
Neutron star ^c	2×10^{30}	1×10^4	2×10^5

Lecture VI: Kepler's laws

1. THE LAW OF ORBITS: All planets move in elliptical orbits, with the Sun at one focus.

2. THE LAW OF AREAS: A line that connects a planet to the Sun sweeps out equal areas in the plane of the planet's orbit in equal time intervals; that is, the rate dA/dt at which it sweeps out area A is constant.

3. The law of periods: The square of the period of any planet is proportional to the cube of the semi-major axis of its orbit.

Lecture VI: Kepler's laws

1. THE LAW OF ORBITS: All planets move in elliptical orbits, with the Sun at one

focus.

Lecture VI: Kepler's laws

2. THE LAW OF AREAS: A line that connects a planet to the Sun sweeps out equal areas in the plane of the planet's orbit in equal time intervals; that is, the rate dA/dt at which it

sweeps out area A is constant.

