General Physics I

Mechanics, optics, thermal dynamics, and other basic fundamental things.

Timy Che Liu

Lecture V : Rotation

Position Displacement Velocity Acceleration

Δx \vec{V}
\vec{a}

Angular
θ
$\Delta \theta$
ω
α
Relating the linear and angular variables

$$
\begin{aligned}
& s=\Delta \theta r \quad \frac{d s}{d t}=\frac{d \theta}{d t} r \quad \frac{d v}{d t}=\frac{d \omega}{d t} r \\
& \nu=\omega r \\
& a=\alpha r
\end{aligned}
$$

Lecture V : Rotation

The period of revolution T : considering the $s=2 \pi r$

$$
\begin{aligned}
T & =\frac{2 \pi r}{v}=\frac{2 \pi r}{\omega r} \\
& =\frac{2 \pi}{\omega}
\end{aligned}
$$

Lecture V : Kinetic Energy of Rotation

Rotation inertia $I=\sum m_{i} r_{i}^{2}$

$$
\begin{aligned}
K & =\frac{m_{1} v_{1}^{2}}{2}+\frac{m_{2} v_{2}^{2}}{2}+\frac{m_{3} v_{3}^{2}}{2}+\ldots \\
& =\sum \frac{m_{i} v_{i}^{2}}{2} \\
& =\sum \frac{m_{i}\left(\omega r_{i}\right)^{2}}{2}=\frac{\left(\sum m_{i} r_{i}^{2}\right) \omega^{2}}{2} \\
& =\frac{\sum m_{i} r_{i}^{2} \omega^{2}}{2}=\frac{I \omega^{2}}{2}
\end{aligned}
$$

Lecture V : Rotation Inertia $I=\sum m r_{i}^{2}$

Lecture V : parallel-Axis Theorem

$$
\begin{aligned}
I & =\int r^{2} d m=\int\left[(x-a)^{2}+(y-b)^{2}\right] d m \\
& =\int\left[\left(x^{2}+y^{2}\right)-2 a x-2 b y+\left(a^{2}+b^{2}\right)\right] d m \\
& =\int\left[r^{2}+h^{2}\right] d m=I_{c o m}+M h^{2}
\end{aligned}
$$

Lecture V : Rotation Inertia

$$
\begin{gathered}
I=\sum m_{i} r_{i}^{2} \\
=\int^{2} d m \\
\int_{i}^{f} r^{2} d m
\end{gathered}
$$

Lecture V : Torque

Torque is a ability to rotate the body
$\tau=\vec{r} \times \vec{F}=r F \sin \phi=r F \cos \theta$

Rotation axis
Rotation axis

Lecture V : Net Torque

$\tau_{n e t}=r_{1} \vec{F}_{1} \sin \theta_{1}+r_{2} \vec{F}_{2} \sin \theta_{2}+r_{3} \vec{F}_{3} \sin \theta_{3}$

Lecture V : Newton's second law for rotation

Start from Newton's second law: $F_{n e t}=m a$

$$
\begin{aligned}
F_{t} & =m a_{t} \\
F_{t} r & =m a_{t} r \\
\tau & =m a_{t} r=m(\alpha r) r \\
\tau & =I \alpha
\end{aligned}
$$

Lecture V : Work and rotational kinetic energy

$$
\begin{array}{r}
\Delta K=K_{f}-K_{i}=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}=W \\
W=\int \vec{F} d x=\int \vec{F}_{t} r d \theta=\int \tau d \theta \\
=\tau\left(d \theta_{f}-d \theta_{i}\right) \\
P=\frac{d W}{d t}=\tau\left(d \theta_{f}-d \theta_{i}\right) / d t=\tau \omega
\end{array}
$$

Lecture V : Rolling

$$
\begin{aligned}
s & =\Delta \theta r \\
v_{c o m} & =\omega r
\end{aligned}
$$

Lecture V : Kinetic Energy of Rolling

$$
I=I_{c o m}+M h^{2}{ }_{h=R}
$$

$$
\begin{aligned}
K & =\frac{1}{2} I_{P} \omega^{2} \\
& =\frac{1}{2}\left(I_{c o m}+M R^{2}\right) \omega^{2} \\
& =\frac{1}{2}\left(I_{c o m} \omega^{2}+M v^{2}\right)
\end{aligned}
$$

Lecture V : Torque \& Angular momentum

 $l \equiv \vec{r} \times \vec{p}$$=m(\vec{r} \times \vec{v})$

$$
\tau=\vec{r} \times \vec{F}=\vec{r} \times m \vec{a}
$$

$$
=\vec{r} \times m \vec{a}+\vec{v} \times m \vec{v}
$$

$$
=\vec{r} \times m \frac{d \vec{v}}{d t}+\frac{d \vec{r}}{d t} \times m \vec{v}
$$

$$
=\frac{d}{d t}(\vec{r} \times \vec{p}) \equiv \frac{d}{d t}(l)
$$

Lecture V : Torque \& Angular momentum

$$
\begin{aligned}
l & \equiv \vec{r} \times \vec{p} \\
& =m(\vec{r} \times \vec{v}) \\
& =m r v \sin \phi
\end{aligned}
$$

$$
\begin{aligned}
\tau_{\text {net }} & =\sum \vec{r}_{i} \times \vec{F}_{i}=m \sum \vec{r}_{i} \times \vec{a}_{i} \\
& =m \sum \vec{r}_{i} \times \frac{d \vec{v}_{i}}{d t}+\vec{v}_{i} \times \vec{v}_{i}=0
\end{aligned}
$$

$$
=m \sum \vec{r}_{i} \times \frac{d \vec{v}_{i}}{d t}+\frac{d \vec{r}_{i}}{d t} \times \vec{v}
$$

$$
=\vec{r} \times \frac{d M \vec{v}}{d t}+\frac{d \vec{r}}{d t} \times M \vec{v}
$$

$$
=\frac{d}{d t}\left(\overrightarrow{r_{i}} \times \overrightarrow{p_{i}}\right)=\frac{d}{d t}(L)
$$

Lecture V : Conservation of Momentum If no net external torque acts on the system :

$$
\frac{d}{d t}(\vec{L})=0, \quad \mathrm{~L}=\mathrm{constant}
$$

Net angular momentum \vec{L}_{i} at initial time

= net angular momentum \vec{L}_{f} at later time

$$
\vec{L}_{i}=\vec{L}_{f} \text { (isolated system) }
$$

Lecture VI : Gravitation

Inverse square law: point-source radiation into three-dimensional space.
point source case

Lecture VI : Gravitation

Line source case

Plane source case

Theater Spot Light
-Laser Beam!

Lecture VI : Gravitation

$$
F=\frac{G m_{1} m_{2}}{r^{2}} \hat{r}
$$

This is the pull on particle 1 due to particle 2.

Lecture VI : Gravitation

Altitude (km)	a_{g} $\left(\mathrm{~m} / \mathrm{s}^{2}\right)$	Altitude Example
0	9.83	Mean Earth surface Mt. Everest
3.8	9.80	Highest crewed balloon 36.6 9.71
400	8.70	Space shuttle orbit Communications satellite
35700	0.225	

$$
F=\frac{G m_{1} m_{2}}{r^{2}} \hat{r}
$$

Lecture VI : Gravitation

Lecture VI : Escape Speed

$$
\begin{gathered}
U=-\frac{G M m}{r} \\
\frac{1}{2} m v^{2}=\frac{G M m}{r}
\end{gathered}
$$

Body	Mass (kg)	Radius (m)	Escape Speed $(\mathrm{km} / \mathrm{s})$
Ceres a	1.17×10^{21}	3.8×10^{5}	0.64
Earth's moon a	7.36×10^{22}	1.74×10^{6}	2.38
Earth $_{\text {Jupiter }}$	5.98×10^{24}	6.37×10^{6}	11.2
Sun	1.90×10^{27}	7.15×10^{7}	59.5
Sirius B b	1.99×10^{30}	6.96×10^{8}	618
Neutron star c	2×10^{30}	1×10^{7}	5200

Lecture VI : Kepler's laws

1. THE LAW OF ORBITS: All planets move in elliptical orbits, with the Sun at one focus.
2. THE LAW OF AREAS: A line that connects a planet to the Sun sweeps out equal areas in the plane of the planet's orbit in equal time intervals; that is, the rate $\mathrm{dA} / \mathrm{dt}$ at which it sweeps out area A is constant.
3. The law of periods: The square of the period of any planet is proportional to the cube of the semi-major axis of its orbit.

Lecture VI : Kepler's laws

1. THE LAW OF ORBITS: All planets move in elliptical orbits, with the Sun at one focus.

Lecture VI : Kepler's laws

2. THE LAW OF AREAS: A line that connects a planet to the Sun sweeps out equal areas in the plane of the planet's orbit in equal time intervals; that is, the rate $\mathrm{dA} / \mathrm{dt}$ at which it sweeps out area A is constant.

