General Physics |

Mechanics, optics, thermal dynamics, and other basic fundamental

things.
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Reminder of the Lecture 1l:

Keyword:

* vector:

* Unit vector

* Position vector

* adding, scalar product, vector product
 Newton’s 1st & 2nd law

e 1D & 2D motion



Lecture 11l : Force & Energy Again

Newton’s first law

It no force acts on a body, the body’s velocity cannot change; that 1s, the body
cannot accelerate.

Newton’s second law

T'he net force on a body 1s equal to the product of the body’s mass and its
acceleration.



Lecture 111 : Force & Energy again

Newton’s first law

It no force acts on a body, the body’s velocity cannot change; that 1s, the body
cannot accelerate.

It no net force acts on a body (Fnet = 0, Z Fi = 0,), the body’s velocity cannot

change; that 1s, the body cannot accelerate.

Newton’s first law 1s not true 1n all reterence frames, but we can always find
reference frames 1n which 1t (as well as the rest of Newtonian mechanics) 1s true.
Such special frames are referred to as inertial reference frames, or sismply mnertial
frames.



Lecture 111 : Force & Energy again

Exxample of non nertial tframe:

Earth's rotation
causes an
apparent deflection.




Lecture 111 : Force & Energy again

Newton’s second law

T'he net torce on a body 1s equal to the product of the body’s mass and its
acceleration.

?net =ma
System Force Mass Acceleration
S newton(N) kilogram(kg) m/s*
CGS dyne oram(g) cmls*

International System of Unats (1)



Lecture 111 : Force & Energy again

Some forces

The gravitational force: Fg =mg
Weight: W
T'’he normal force: N

Friction force

'Tension

International System of Unats (1)



Lecture 111 : Force & Energy again

Newton’s third law

When two bodies interact, the torces on the bodies from each other are always
equal 1n magnitude and opposite 1n direction.

| |

— —
FBC:FCB FBC:_FCB Fep
—

third-law force pair

(%) The force on B
due to C has the same
magnitude as the
force on C due to B.




Lecture 111 : Applying Newton’s Laws




Lecture 111 : Applying Newton’s Laws

The box accelerates.

Cord's pull

Gravitational
force




Lecture 111 : Applying Newton’s Laws

Newtonian Mechanics The velocity of an object can change
(the object can accelerate) when the object is acted on by one or
more forces (pushes or pulls) from other objects. Newtonian me-
chanics relates accelerations and forces.

Force Forces are vector quantities. Their magnitudes are de-
fined in terms of the acceleration they would give the standard
kilogram. A force that accelerates that standard body by exactly
1 m/s? is defined to have a magnitude of 1 N. The direction of a
force 1s the direction of the acceleration it causes. Forces are com-
bined according to the rules of vector algebra. The net force on a
body 1s the vector sum of all the forces acting on the body.

Newton’s First Law If there is no net force on a body, the
body remains at rest if it 1s initially at rest or moves 1n a straight
line at constant speed if 1t 1s iIn motion.

Inertial Reference Frames Reference frames in which
Newtonian mechanics holds are called inertial reference frames or
inertial frames. Reference frames in which Newtonian mechanics
does not hold are called noninertial reference frames or noniner-
tial frames.

Mass The mass of a body is the characteristic of that body that
relates the body’s acceleration to the net force causing the acceler-
ation. Masses are scalar quantities.

Newton’s Second Law The net force F.., on a body with
mass m is related to the body’s acceleration a by

>

E

net (5"1)

5
= ma,
which may be written in the component versions

Foetx =ma, Fy,=ma, and F,,= ma,. (5-2)

y
The second law indicates that in SI units

1 N =1kg-m/s (5-3)




Lecture 111 : Force & Energy again
Properties of Friction

. Static frictional force .
__—Maximum value of f

2. Kinetic frictional force / f is approximately
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Lecture 111 : Force & Energy again
Properties of Friction

[ 1s approximately

constant —\

Magnitude of
frictional force

Breakaway

N
'F':
-



Lecture 111 : Force & Energy again
Properties of Friction

/Mammum value of f

[ 1s approximately

1l
”l constant

"
o
L

e
-

S
-
o0
S

=

frictional torce

Breakaway

Time

N
ln':
p S—




Lecture 111 : Force & Energy again
Properties of Friction T

T+ Fy+ F,+F;=0

.
T'cosep — =0  X-axis

T,+Fy—F,+0=0 I
T T L R e 2
Tsingg + Fy—mg =0 COS ¢ + iy Sin @



Lecture 111 : Force & Energy again
Drag fOI‘C@ drag coefficient C

A fluid i1s anything that can flow—generally either a gas or a liquid.

When there is a relative velocity between a fluid and a body (either because the body
moves through the fluid or because the fluid moves past the body), the body

experlences a drag force D that opposes the relative motion and points In the
direction in which the fluid flows relative to the body.

D

!




Lecture 111 : Force & Energy again
Drag fOI‘C@ drag coefficient C

Terminal speed

the body’s speed no longer increases. The body then reaches at a constant
speed, called the terminal speed V,

D—Fg=ma

Object Terminal Speed (m/s) 95% Distance? (m)

Shot (from shot put) 145 2500
Sky diver (typical) 60 430
Baseball 42 210
Tennis ball 31 115
Basketball 20 47
Ping-Pong ball 10
Raindrop (radius = 1.5 mm) 6
Parachutist (typical) 3




Circular motion

/\

VvV =vi+ ]—( vsin@)i + (vcos )
y X
sinf == cos@ = —
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N d? dep dx
ad = —— )i 4 (——
dr = r dt ) (r dt )]
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lL.ecture 1l : Enerov

Energy can be transtormed from one type to another and
transterred from one object to another, but the total amount
1s always the same

unit: joule



l.ecture 11 : Work

Work W 1s energy transterred to or from an object by means ot a
force acting on the object. Energy transterred to the object 1s

positive work, and energy transterred from the object 1s negative
work.

—

W=F-d

To calculate the work a force does on an object as the object moves through
some displacement, we use only the force component along the object’s

displacement. The force component perpendicular to the displacement does
Zero work.

unit: joule



Lecture 11 : Work

Gravitational force:

Spring force:



Lecture 11 : Kinetic energy

Kinetic energy K 1s energy associated with the state of motion of
an object. The taster the object moves, the greater 1s 1ts kinetic
energy. When the object 1s stationary, its kinetic energy 1s zero.

unit: joule



I.ecture 1l : Work-kinetic ' Theorem

AK =W

change in the kinetic energy of an object

net work done on an object



[.ecture 1l : Power

The time rate at which work is done by a force Is said to be the

power due to the force.
p 14
avg At

unit: watt, horsepower



l.ecture 1l : Conservative &
Nonconservative force

In a situation in which W1 = - W2 iIs always true, the other type of energy is a
potential energy and the force is said to be a conservative force.

Others are called nonconservative force.

Property of conservative force: Path independence

The net work done by a conservative force on a particle moving around any
closed path is zero.



L.ecture 11 : Conservation of Mechanical
Energy

E =K+U

m

In an isolated system where only conservative forces cause energy changes, the
Kinetic energy and potential energy can change, but their sum, the mechanical

energy £ .. of the system, cannot change.

principle of conservation of mechanical energy.

AE, = AK+AU=0



V= +vIIl'dX

All kinetic energy
—— " /9 ——

| v

U K
/ U K U K
(a) \.
(b)

(h)

h* P NP 1
v=0 v=0

All potential The total energy All potential

energy c_lo'es not change energy

(it is conserved).
U K U K
(8) (¢)
e
T)S& ——/ V= _vIIl'dX »
Vv

All kinetic energy




Lecture 1l : the change of velocity

X

Instantaneous velocity
— . Ax dx Some J
V=lm— =—
—0 At dt ppen?
O O O O

t=0. t=1s t=2s



Lecture 1l : the change of velocity

) Acceleration
Instantaneous velocity
— . Ax dx
V=llm— = —
t—(0 At dt
Acceleration:
Ay dv
?=lm— = —
t—(0 At dt ® ® ® O

t=0. t=1s t=2s



l.ecture 1l : Acceleration

X
)
Newton’s first law
It no force acts on a body, the body’s
velocity cannot change; that 1s, the
body cannot accelerate.
® ® ® o

t=0. t=1s t=2s



l.ecture 1l : Acceleration

X

Newton’s second law

T'he net torce on a body 1s equal to the \

product of the body’s mass and 1its

acceleration.
Acceleration:
Ay dv d*x
?=lm— = — = —
t—() At dt dtz ® ® ® e

t=0. t=1s t=2s



l.ecture 1l : Acceleration: ex

A particle’s position on the x axis 1s given by
x=4-27t+

with x 1n meters and 7 1n seconds.

(a) Because position x depends on time ¢, the particle must
be moving. Find the particle’s velocity function v(¢) and ac-
celeration function a(z).

(b) Describe the particles motion for t>0
(c) Is there ever a time when v=0



l.ecture 1l : Acceleration

A particle’s position on the x axis 1s given by

x=4—-27t+ £,

with x 1n meters and 7 1n seconds.

(a) Because position x depends on time ¢, the particle must
be moving. Find the particle’s velocity function v(¢) and ac-
celeration function a(z).

(b)Describe the particles motion for t>0
(c)ls there ever a time when v=0 = 4‘3
V pos
ad p()S

speeding up
(d)

-50 m 0 4m

t=0
t=1s V neg
V neg a=0
a pos leftward
slowing motion

(a)




Lecture 11 : Acceleration = C

3

=
d = constant

Slopes of the position graph

—> are plotted on the velocity graph.
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Slope of the velocity graph is
plotted on the acceleration graph.

a

a(t)
Slope =0
{

0

Acceleration




l.ecture 11 : Acceleration = C

Question 1:

Spotting a police car, you brake a Ferrari from a speed 200 km/h to a speed
100 km/h during a displacement of 100m, at a constant acceleration.

(a)what is that acceleration

(b) How many time is required for the given

decrease In speed.




Free-Fall Acceleration

The free-fall acceleration near Earth’s surface
iIsa=-g=-9.8 m/s, hence g =9.8m/s




Free-Fall Acceleration

The free-fall acceleration near Earth’s surface
isa=-g=-9.8 m/s, hence g =9.8m/s

During
descent,

During ascent, \: a==5

a=-g, :Spccd
speed decreases, INCreases,
and velocity and velocity
becomes less becomes
positive more
negative
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Vector

Scalar:
A scalar 1s a physical quantity that has magnitude but no direction.

Vector:

Vectors are physical quantities that possess both magnitude and direction.
Components ot vectors

This 1s the y vector component.

Adding vector

This is the x vector
component.




Vector

Scalar:
A scalar 1s a physical quantity that has magnitude but no direction.

Vector:
Vectors are physical quantities that possess both magnitude and direction.

Components of vectors -~
~__—Toadd aand b,

. draw them
head to tall.

Adding vector

This is the

resulting vector,

from tail of g_:
to head of b.




Unit Vector

A unit vector 1s a vector that has a magnitude of exactly I and points 1n a particu-
lar direction. It lacks both dimension and unait. Its sole purpose 1s to point — that
15, to specity a direction. T'he unit vectors in the positive directions of the x, y, and
z. Unit vectors are very useful for expressing other vectors;

The unit vectors point
along axes.




Position Vector

Magnitude-angle notation

]
>,
:
g
:

Distance (km)




Multiplying Vectors

Muluplying a vector by a scalar

Muluplying a vector by a vector
(scalar product)

—

N Component of b
a - b =abcosqg

along direction of
ais b cos ¢

Multiplying these gives \/ /;)
the dot product. 7 a

b
N Component of a

along direction of
Or multiplying these bis a cos ¢
gives the dot producit. (6)




Multiplying Vectors

Multiplying a vector by a scalar

Multplying a vector by a vector

Scalar product:

—

a - b =abcosg¢

Vector product: la, a| -
. : > | Yx z X y
a X b =absin ¢ b, b, tk b, b,
If @ and b are parallel or anti-parallel,
What is the vector product of @ and b = (a,b, — b,a,)i + (a,b;, — b,a,)j + (ab, — b,a,

'@ X bl = ab sin 6




Rotation matrix & Vectors

— |
0
—>/ coSs @ sin ¢ :
a = . 9 :
Sin & g
My M| |1 _ cos @
My, My | |0 sin @ cos® M,
—sinfd M
M, *1+M,;,*0 = cos® sin - M,

M21*1+M22*0=sin(9




Rotation matrix & Vectors [¢0s0 My
siné M,,
a =" ,
e ;
6! cosd
E», _ —sin @ :
cost —sin 6
0 M —q]
. . |O | = |~smne cosfd —sind
siné M| |1 COS 0 «inf cos@ | Foranti-clockwise

cosO@*0+M;,*1 =—sin6
sin@*0+ M,,*1 =cosb

cos@ sind
—siné@ cosf

For clockwise




Identity Matrix, Unit matrix

1 0O

[=1 0 1

y

1 0 0O
, 10 1 0f,
0 0 1
When A 1s mXn, 1t 1s a property of matrix multiplication that

I XA=A, AXI =A



Axis rotation (Ex: 3D)

1 0 0

R, = |0 cosO@ sin6
0 —sin@ cos6

cos@ 0O sin@
Ry = 0 1 O
—sin@ 0O cos6

cos sin@ O
R, = |—=sinf cos6 0
0 0 1



Axis rotation (non-commutative)
|
R, = |0 COSH SlnH

. v
0O —sin@ coso

cos@ 0 sind R, R, A
Ry = 0 1 O (} X

—sin@ 0 cos6

cos@ sind 0 R. R, A
R, = | —sind COSH O .
0




Position vector

position vector 7, which is a vector
that extends from a reference
point (usually the origin) to the
particle. In the unit-vector

NO
NO
o

F=xi+yj+zk

Distance (km)
o
S
215&1);

|
|
|
|
|
|
|
|
I
|
|
|
I
|
|
|

F(t) = x(D)i + y(1)] + 2(Dk X
0)e X

0 100
Distance (km)




Position vector

then the particle’s displacement 7
during that time interval 1s

NO
NO
o

7'1 —Xll+y1] +Zlk
rz—xzz +y2] +22k
Ar = KHt,) — (1)

Fo — Iy

Distance (km)
o
S
215*('1)3

v,
Y ASIESEE.
0 100
Distance (km)

(X2 — xl)f 1 (y2 — )’1)]A + (Zz — Zl)lg




Consider Peter’s walk

F=x(i +y()j
x(H) ==t +2t+ 1

v(it) =1> =2t + 1

What 1s the path of Peter
from O s to 3 s?




Velocity again

Instantaneous velocity

— . Ax dx
V =lim— = —
t—() At dt
Acceleration:
AV AV
a = lim—— =

t—0 At ?

— Ar dr

V =1lim— = —
t—() At dt

N

a = lim —
t—() Af



Consider Peter’s walk

F=x(i +y()j
x(H) ==t +2t+ 1

v(it) =1> =2t + 1

What 1s the velocity of
Peter?




Consider Peter’s walk

F=x(i +y()j
x(H) ==t +2t+ 1

v(it) =1> =2t + 1

What 1s the acceleration
of Peter?




More practice

Here are four descriptions of the position (in meters) of a puck as it moves in an xy plane:
(1) x=-3t2+4—2 and y=6¢2—4t (3) 7 =21 — (4t + 3)]

2) x=-3t—4 and y=-52+6 (4) 7=@4r—-20i +3j

Are the x and y acceleration components constant? Is acceleration a constant?




Projectile motion




Projectile motion

X axis:

X —_ V()xt — VO COS H()t

Y axis:

t> | t
Y = Voyz—gT — V, sin Gyt — 2—

Vy = Vo, + &2 Vy2 = ng + 2g(y — ¥p)



Projectile motion

X axis:

X = VOxt — Vo COS Hot —

Y axis:
t2
Y=Y, t—g— = V|, s1n Gt —
0y 3 \ 0
2
X
— tan Ox — :

gt
)

—ZVOZ 032 0 ITrajectory!!



