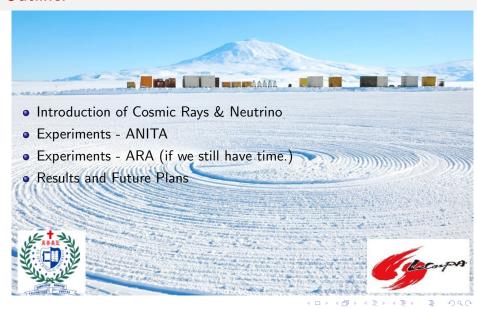
Neutrino Experiments at Antarctica


T.C Liu LeCosPA, National Taiwan University

May 21, 2015

Outline:

Discovery of Neutrino

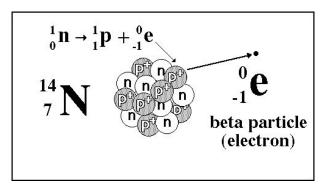


Figure: beta decay could conserve energy, momentum, and angular momentum in 1930.

"Neu-trino"

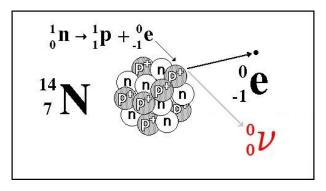


Figure : Pauli hypothesized an undetected particle that he called a "neutron" in keeping with convention.

Discovery of Neutrino

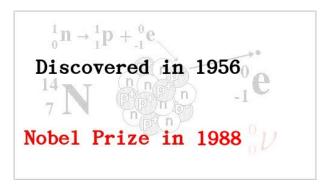


Figure: Pauli hypothesized an undetected particle that he called a "neutron" in keeping with convention.

How Many Generations?

Figure: When the third type of lepton, the tau, was discovered in 1975 at the SLAC, it was expected to have an associated neutrino (the tau neutrino).

How Many Generations?

Figure: When the third type of lepton, the tau, was discovered in 1975 at the SLAC, it was expected to have an associated neutrino (the tau neutrino).

Neutrino Flux is not Conserved ?!

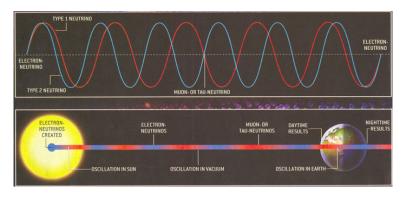


Figure : Measurements of solar neutrino types were not consistent with models of the Sun's interior

Neutrino Flux is not Conserved ?!

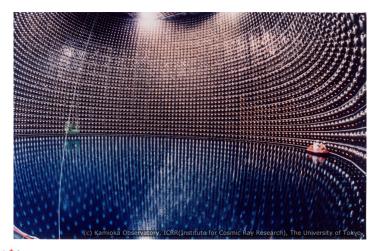


Figure Super-Kamiokande observed super nova neutrino and confirm the Neutrino oscillation mechanism.

Neutrino Flux is not Conserved ?!

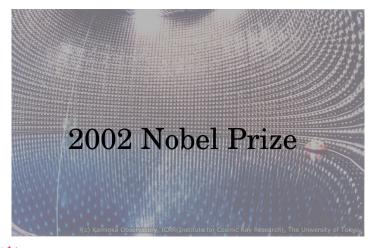
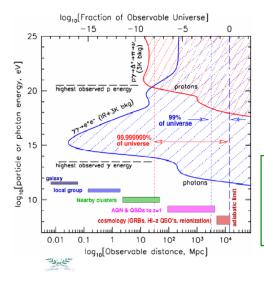


Figure Super-Kamiokande observed super nova neutrino and confirm the Neutrino oscillation mechanism.


Short Summary I: Unsolved Problems

- Absolute mass of the neutrinos.
- Neutrino decay.
- Neutrino hierarchy.
- How many generations?
- Sterile neutrino. (right-handed neutrinos)
- Dark matter, WIMP.
- Mixing Angles.
-

What I Want? The Ideal UHE Messenger

- Photons lost above 100 TeV (pair production on CMB & IR)
- Protons and Nuclei suffer curvature induced by B fields
- But: we know there are sources up to 10²⁰ eV!!

UHE Neutrino Detectors Study:

- Highest energy observation of extragalactic sources
- Very distant sources
- Deep into opaque sources

Neutrinos

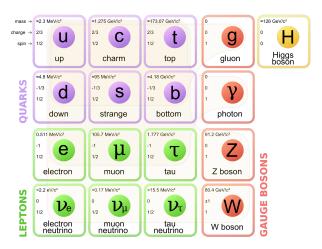


Figure: Neutrino only involves in weak interactions.

Fundamental Forces

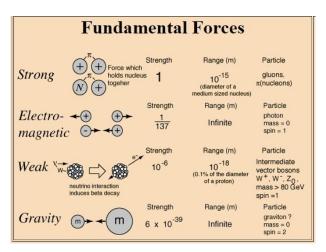


Figure: Fundamental Forces.

Cross Section of Neutrino

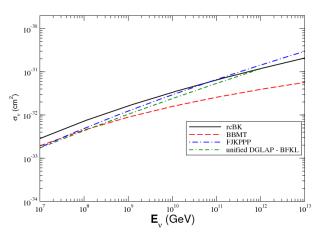


Figure : Neutrino cross section. 1 barn $=10^{-24} \text{cm}^2$. [Phys.Rev. D83 (2011) 014014]

Interaction Length of Neutrinos

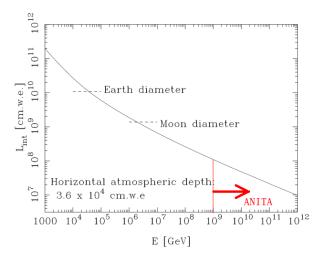
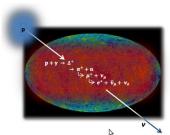
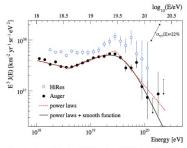



Figure : The neutrino interaction length (in centimeters water equivalent distance) [Astropart.Phys. 35 (2012) 383-395]

UHE Neutrino & GZK Effect


Auger and HiRes measurements of UHE cosmic rays consistent with GZK cut-off

Guaranteed GZK neutrino flux, but how large?

copy from Jonathan's slides

At energies above ~10^{19.5}eV cosmic rays will interact with CMB photons producing neutrinos

Process is known as the GZK effect

The Pierre Auger Collaboration (2010): Phys. Lett. B 685 (4-5): 239-246. HiRes Collaboration. Astropart. Phys. 32 (2009) 53.

GZK Radius

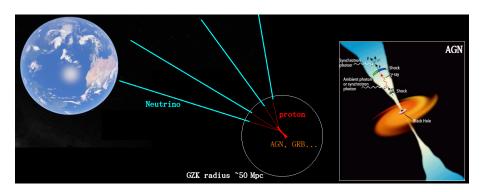
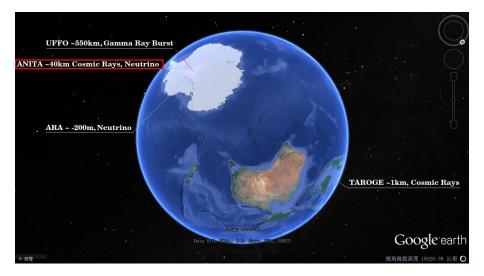



Figure : The UHE neutrinos can point back to the original UHE source without bending of B field.

Short Summary II: The UHE Neutrinos

- Trace particle UHECR hyper-accelerators to very early epochs
 Even at z~10 or more, GZK neutrino energies peak at 10-100 PeV
 they all point back directly to the UHECR sources
- Their flux is constrained by UHECR sources, once determined
 Can become a quasi-isotropic "test beam" of UHE neutrinos
- Neutrino Flavor physics
 Can encode source information by flavor ratio, even new physics (neutrino decay?)

The ANtarctic Impulsive Transient Antenna (ANITA)

UHE Neutrino Interact with Earth

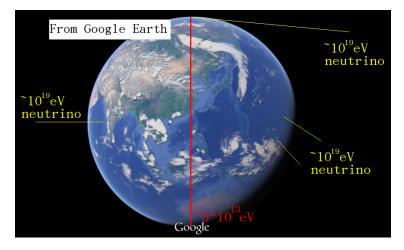
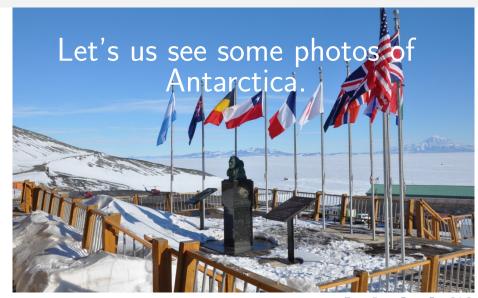



Figure : The interaction length of neutrino with $5*10^{13}$ eV is close to diameter of Earth. The interaction length for 10^{19} eV neutrino is $6*10^7$ g/cm²

Take a Break

The ANITA Concept

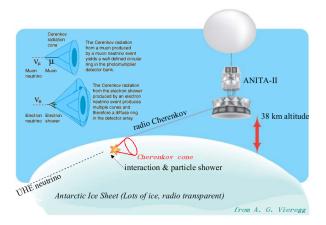


Figure: Cherenkov radiation is electromagnetic radiation emitted when a charged particle passes through a dielectric medium at a speed greater than the velocity of light in that medium.

Coherent Radio Emission (Askaryan Radiation)

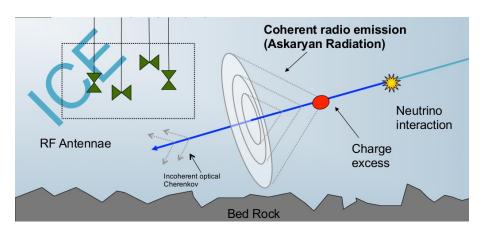
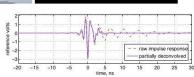
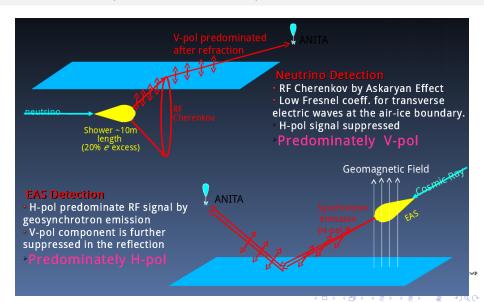


Figure Detect radio emission from neutrino induced particle cascades in ice


Askaryan Radiation Experiment in SLAC


Askaryan effect in sand(2000) rock salt(2003) and ice(2006)

PRL 99, 171101 (2007) see also: PRE 62, 8590 (2000), PRL 86, 2802 (2001), PRD 72, 023002 (2005) PRD 74, 043002 (2006)

copy from Ryan's slides

Signal Type (neutrino VS. EAS)

Setup of T-510 (Geo-Synchrotron Radiation)

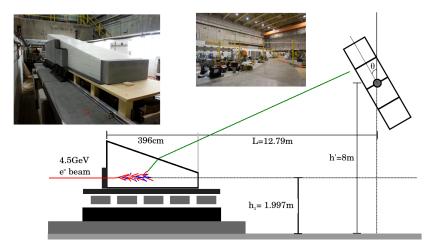


Figure Electron beam creates secondary cascades in a 4 m long high-density polyethylene (HDPE) target placed in a magnetic field (up to 1000G).

ANITAs

ANITA - lite 2003 LDB,Texas

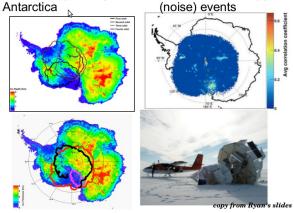
ANITA 2006-2007 Antarctica

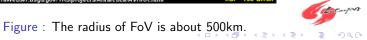
ANITA-II 2008-2009 Antarctica

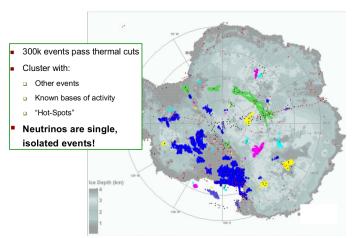
Figure: Before 2010, we already launched 2 balloons in Antarctica.

Flight Path of ANITA & ANITA-II

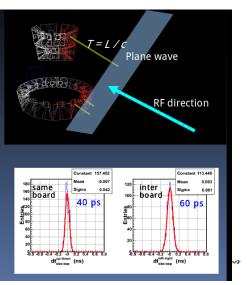
Over 65 days of flight over
 Over 35 million triggered

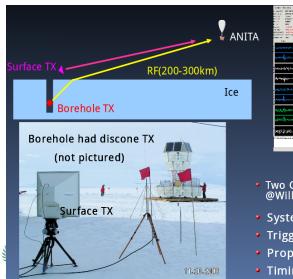


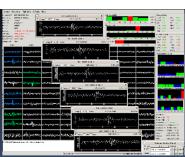


Figure: flight path of ANITA & ANITA- II.


FoV of ANITA

Man-Made EVENTs of ANITA

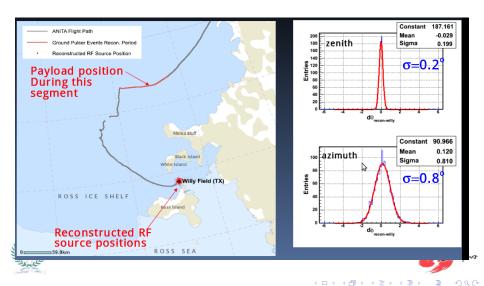


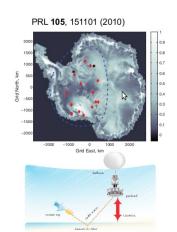

Event Reconstruction


- Angular reconstruction is a crucial part in the ANITA data analysis.
- Powerful background rejection incoherent thermal events (99% of data set) anthropogenic RF events from existing bases air shower RF events.
- Neutrino reconstruction
 neutrino direction information
 provides R and refraction angle for energy
 measurement.
- Angular reconstruction using timing.
- time resolution; 40-60 ps (time difference between channels)
- Achieved angular resolution;
 0.2° (zenith) and 0.8° (azimuth.)

from jiwoo Nam

Ground Pluser System



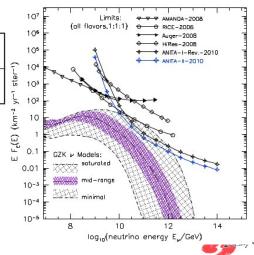

borehole pulse event

- Two Ground Pulser Systems
 @Williams Field and Taylor Dome
- System Verification
- Trigger Test
- Propagation and Surface
- Timing / Angular Resolution

Angular Resolution

Results of ANITA I & II (cosmic rays)

- A combination of vxB and Fresnel coefficients result in air shower emission being horizontally polarised at the payload
- ANITA-I detected 16 isolated H-pol candidate UHECR events
- ANITA-II did not trigger on the H-pol channels
 Doh!!
- Still detected 5 UHECR candidate events



Results of ANITA I & II (Neutrino)

ANITA-II Results

Isolated v-pol events	1
Expected background events	0.97 ± 0.42

 Combine with efficiency to extract world's best limit on UHE neutrino flux above 10¹⁹eV

The ANtarctic Impulsive Transient Antenna (ANITA-III)

Figure: ANITA-III instrument, 2014-1015.

Flight Path of ANITA-III 2014-2015

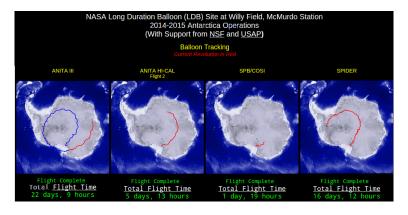
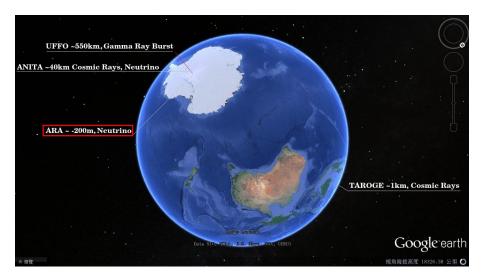


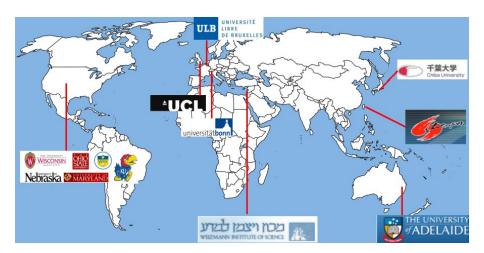
Figure: Flight path of ANITA III.

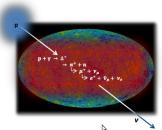
http://www.csbf.nasa.gov/antarctica/payloads.htm



Time for video

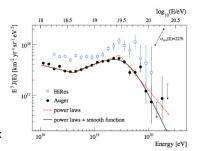
Time for Video !!!


ARA at -200m


ARA at -200m

The ARA Collaboration

The Askaryan Radio Array (ARA) is an Ultra High Energy (UHE) Neutrino Detector at the South Pole


Auger and HiRes measurements of UHE cosmic rays consistent with GZK cut-off

Guaranteed GZK neutrino flux, but how large?

copy from Jonathan's slides

At energies above ~10^{19.5}eV cosmic rays will interact with CMB photons producing neutrinos

Process is known as the GZK effect

The Pierre Auger Collaboration (2010): Phys. Lett. B 685 (4-5): 239-246. HiRes Collaboration, Astropart. Phys. 32 (2009) 53.

ARA-37

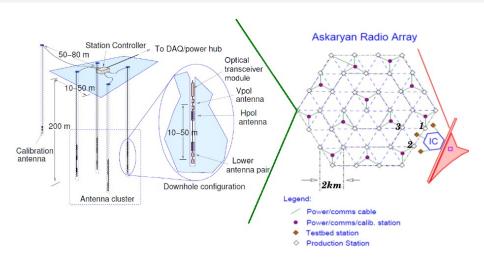


Figure : ARA 37 Layout, 37 Stations 200m below the surface \sim 200km 2 coverage

DAQ System and Antenna Cluster

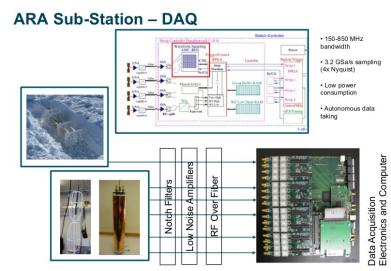
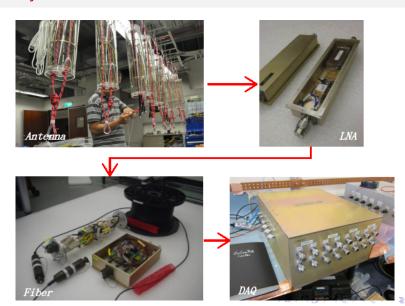



Figure: Each station has 4 string with 16 channels

DAQ System and Antenna Cluster

Build & Test in Taiwan

Delivery

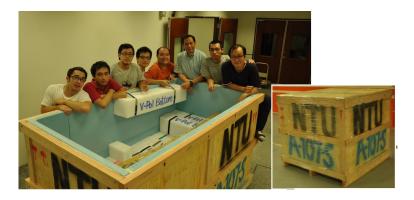
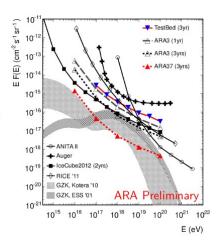


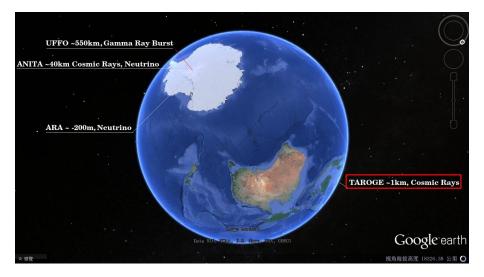
Figure: delivery for 2 stations

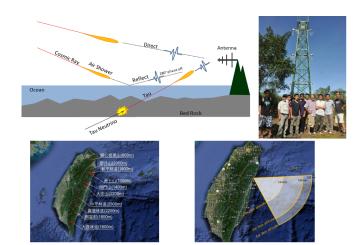
Drilling and Deployment

- Hot water drill creates 6" wide holes
- Holes are pumped dry
- Approaching $\sim 8\,\mathrm{hr} \times \sim 1$ drill crew per 200 m hole
- Instrumentation deployed from greenhouse sled



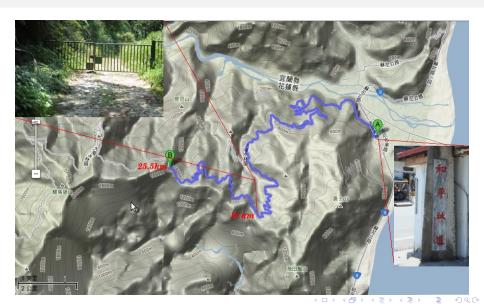
Simulation & Expected Sensitivity

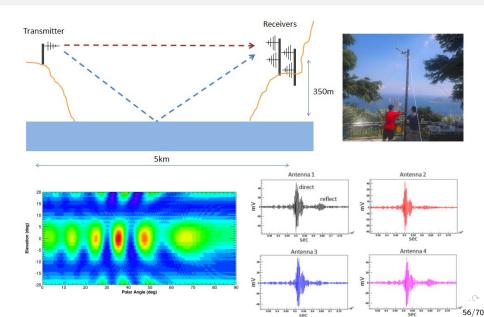

- In-house tool called AraSim
- Simulates
 - → neutrino interaction
 - ightarrow radio emmission
 - ightarrow radio propagation
 - ightarrow instrument response
 - ightarrow thermal, instrument noise
 - ightarrow hardware trigger
 - ightarrow digitized waveforms
- Has been used to calculate trigger-level neutrino sensitivity


Future Plans

- ANITA-4 (2017): Neutrino & cosmic rays
- SWORD(TBD) :cosmic rays
- ARA37 (within 10 years): Neutrino
- TAROGE-10 (within 4 years): Neutrino & cosmic rays

Outline: The Distribution of Experiments


Taiwan Astroparticle Radiowave Observatory for Geo-synchrotron Emission(TAROGE)


TAROGE I at He-Ping

TAROGE at 1200~2000m

Reflection Test of TAROGE

The Synoptic Wideband Orbiting Radio Detector (SWORD)

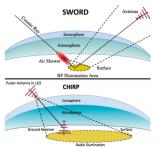
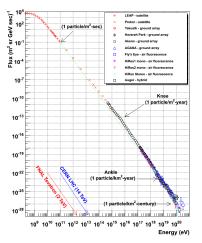


Figure 1: The top figure outlines the SWORD mission concept. The UHECR interacts in the atmosphere to produce an extended air shower. The geo-magnetic field separates the positrose and alectors in the shower to produce a new-

Figure 2: An example of a simulated 2 × 10²⁰ eV cosmic ray induced geo-synchrotron radio impulse after propagation through an ionospheric profile with 14 TECU. The spectrogram of the signal (left) shows the effect of dispersion and birefringence (Equation 1) for a signal detected by a linearly polarized antenna. Waveforms (right) for the bands used in SW/DED, show the processively larger amount of

Figure 4: The CHIRP satellite consists of a deployable logperiodic dipole antenna that is 4.7 meters in length with 3.7 meter longest dipole element. The antenna is stowed in a 1.5U volume of the 6U CubeSat bus, which contains all the maior subsystems needed for the mission.


Future Plans

- ANITA-4 (2017): Neutrino & cosmic rays
- SWORD(TBD) :cosmic rays
- ARA37 (within 10 years): Neutrino
- TAROGE-10 (within 4 years): Neutrino & cosmic rays

Thank you!

Cosmic Background Flux

Cosmic ray spectra of various experiment

Building Antenna

Summer intern student from FJU and NCTU makeing the antenna.

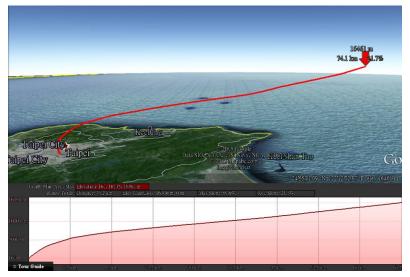
Testing Antenna

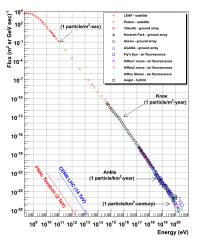


Figure : Summer intern students measure the antenna response.

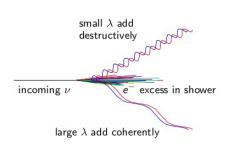
LNAs of TAROGE


Lightning Detecor of TAROGE


Muon Detecor


Muon Detecor

Muon Detecor


Cosmic Background Flux

Cosmic ray spectra of various experiment

Askaryan Effect

- Askaryan effect: Neutrinos with energy above ~ 30 PeV most efficiently detected with radio
- Delta-ray production, Compton scattering and positron annihilation give charge excess
- Compact bunch moves together
- Long wavelengths add coherently

The South Pole has the perfect combination of ice volume, ice RF-transparency, and existing science infrastructure for this experiment.

References

- http://www.ukaff.ac.uk/movies/nsmerger/
- Eichler D, Livio M, Piran T & Schramm D.1989. Nature 340:126
- M´sz´ros , P and Rees, MJ, 1992, ApJ 397:570
- 🗋 Narayan, R., Paczy´ski , B. & Piran, T., 1992, Ap.J., 395, L8
- Paczy´ski , B., 1986, ApJ, 308:L43
- http://0rz.tw/ty1Cl
- MacFadyen, A and Woosley, S, 1999, ApJ, 524:262
- Paczy´ski, B., 1998, ApJ, 494:L45

- Popham, R, et al, 1999, ApJ 518:356
- Woosley, S, 2005, in Proc. "Gamma Ray Bursts in the Swift Era", Washington, D.C., eds. S. Holt, et al, AIPC, in press
- Woosley, S., 1993, Ap.J., 405, 273