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One of the important goals for future neutrino telescopes is to identify the flavors of astrophysical

neutrinos and therefore determine the flavor ratio. The flavor ratio of astrophysical neutrinos observed on

the Earth depends on both the initial flavor ratio at the source and flavor transitions taking place during

propagations of these neutrinos. We propose a model independent parametrization for describing the

above flavor transitions. A few flavor transition models are employed to test our parametrization. The

observational test for flavor transition mechanisms through our parametrization is discussed.
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I. INTRODUCTION

Recent developments of neutrino telescopes [1–5] have
inspired numerous efforts of studying neutrino flavor tran-
sitions utilizing astrophysical neutrinos as the beam source
[6–25]. Given the same neutrino flavor ratio at the source,
some flavor transition models predict rather different
neutrino flavor ratios on the Earth compared to those
predicted by the standard neutrino oscillations [10]. In
this article, we propose a scheme to parametrize flavor
transition mechanisms of astrophysical neutrinos propagat-
ing from the source to the Earth. As will be shown later,
such a parametrization is very convenient for classifying
flavor transition models which can be tested by future
neutrino telescopes.

To test flavor transition mechanisms, it is necessary to
measure the flavor ratio of astrophysical neutrinos reaching
to the Earth. The possibility for such a measurement in
IceCube has been discussed in Ref. [8]. It is demonstrated
that the �e fraction can be extracted from the measurement
of the muon track to shower ratio by assuming flavor
independence of the neutrino spectrum and the equality
of �� and �� fluxes on the Earth due to the approximate

�� � �� symmetry [26,27]. Taking a neutrino source

with fluxes of �e and �� given by E2
�e
dN�e

=dE�e
¼

0:5E2
��
dN��=dE��

¼ 10�7 GeV cm�2 s�1, which is

roughly the order of the Waxman-Bahcall bound [28],
and thresholds for muon and shower energies taken to be
100 GeV and 1 TeV, respectively, the �e fraction can be
determined to an accuracy of 25% at IceCube for 1 yr of
data taking, or equivalently to an accuracy of 8% for a
decade of data taking. Such an accuracy is obtained for
a �e fraction in the vicinity of 1=3. The accuracies corre-
sponding to other central values of the �e fraction are
also presented in Ref. [8]. The �� to �� event ratio can

also be measured in IceCube. However, the accuracy
of this measurement is limited by the low statistics of
�� events.

II. NEUTRINO FLAVOR RATIO REPRESENTED
BY THE TERNARY PLOT

To study neutrino flavor transitions, we describe the
neutrino flavor composition at the source by a normalized
flux �0 ¼ ð�0;e; �0;�; �0;�ÞT satisfying the condition [29]

�0;e þ�0;� þ�0;� ¼ 1;

�0;� � 0; for � ¼ e;�; �;
(1)

where each �0;� is the sum of neutrino and antineutrino

fluxes. Any point on or inside the triangle shown in Fig. 1
represents a specific flavor ratio characterizing the source.
The triangular region bounded by vertices ð1; 0; 0ÞT ,
ð0; 1; 0ÞT , and ð0; 0; 1ÞT contains all possible source
types in terms of flavor ratios. The pion source and the
muon-damped source with flavor compositions �0;� ¼
ð1=3; 2=3; 0ÞT and �0;� ¼ ð0; 1; 0ÞT , respectively, are ex-

plicitly marked on the figure [30].
The net effect of flavor transition processes occurring

between the source and the Earth is represented by the
matrix P such that

� ¼ P�0; (2)

where� ¼ ð�e;��;��ÞT is the flux of neutrinos reaching

to the Earth. We note that our convention implies P�� �
Pð�� ! ��Þ.

III.QMATRIX PARAMETRIZATION FOR FLAVOR
TRANSITIONS OFASTROPHYSICAL NEUTRINOS

Since the triangular region in Fig. 1 represents all
possible neutrino flavor composition at the source, it is
convenient to parametrize �0 by [31]

�0 ¼ 1
3V1 þ aV2 þ bV3; (3)

where V1 ¼ ð1; 1; 1ÞT , V2 ¼ ð0;�1; 1ÞT , and V3 ¼
ð2;�1;�1ÞT . Mathematically, V1=3 represents the center
of the triangle, while aV2 and bV3 represent horizontal and
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vertical displacements within the triangle, respectively.
The ranges for a and b are �1=3þ b � a � 1=3� b
and �1=6 � b � 1=3 such that Eq. (3) covers all points
of the triangular region. The pion source and the muon-
damped source mentioned in Fig. 1 correspond to ða; bÞ ¼
ð�1=3; 0Þ and ða; bÞ ¼ ð�1=2;�1=6Þ, respectively. In
general, a source with a negligible �� flux corresponds to
a ¼ �1=3þ b.

The above parametrization for �0 is also physically
motivated. The vector V1 gives the normalization for the
neutrino flux since the sum of components in V1=3 is equal
to unity, while the sums of components inV2 and that inV3

are both equal to zero. The vector aV2 determines the
difference between �� and �� flux, �0;� ��0;�, while

preserving their sum, �0;� þ�0;�. Finally the vector bV3

determines the sum of �� and �� flux, �0;� þ�0;�, while

preserving their difference �0;� ��0;�.

Following the same parametrization, we write the neu-
trino flux reaching to the Earth as

� ¼ �V1 þ 	V2 þ 
V3: (4)

It is easy to show that

�
	



0
@

1
A ¼

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

0
@

1
A 1=3

a
b

0
@

1
A; (5)

where Q ¼ A�1PA with

A ¼
1 0 2
1 �1 �1
1 1 �1

0
@

1
A: (6)

In other words, Q is related to P by a similarity trans-
formation where columns of the transformation matrix A
correspond to vectors V1, V2, and V3, respectively.
The parameters �, 	, and 
 are related to the flux of each

neutrino flavor by

�e ¼ �þ 2
; �� ¼ ��	�
; �� ¼ �þ	�
;

(7)

with the normalization �e þ�� þ�� ¼ 3�. Since we

have chosen the normalization �0;e þ�0;� þ�0;� ¼ 1

for the neutrino flux at the source, the conservation of total
neutrino flux during propagations corresponds to � ¼ 1=3.
In general flavor transition models, � could be less than
1=3 as a consequence of (ordinary) neutrino decaying into
invisible states or oscillating into sterile neutrinos. To
continue our discussions, it is helpful to rewrite Eq. (7) as

	 ¼ ð�� ���Þ=2; 
 ¼ �e=3� ð�� þ��Þ=6: (8)

It is then clear from Eqs. (5) and (8) that, for fixed a and b,
the first row of matrix Q determines the normalization for
the total neutrino flux reaching to the Earth, the second row
of Q determines the breaking of �� � �� symmetry in the

arrival neutrino flux, and the third row of Q determines the
flux difference �e � ð�� þ��Þ=2.
Compared to P, matrix Q is very convenient for classi-

fying flavor transition models. First of all, those models
which preserve the total neutrino flux are characterized by
the condition

P
�¼e;�;�P�� ¼ 1 in the P matrix parametri-

zation. On the other hand, these flux-conserving models
must give � ¼ 1=3 in the Q matrix parametrization, irre-
spective of the initial flavor composition characterized
by parameters a and b. This implies Q11 ¼ 1 and Q12 ¼
Q13 ¼ 0 from Eq. (5). Clearly the flux-conservation con-
dition in the Q matrix parametrization is much simpler.
Second, for those models which do not seriously break the
�� � �� symmetry, the second and third rows of P are

almost identical, i.e., ðP�e; P��; P��Þ � ðP�e; P��; P��Þ,
and the second and third columns of P are also almost
identical, i.e., ðPe�; P��; P��ÞT � ðPe�; P��; P��ÞT . Using
these conditions and the relation Q ¼ A�1PA,
one can show that ðQ21; Q22; Q23Þ � ð0; 0; 0Þ and
ðQ12; Q22; Q32ÞT � ð0; 0; 0ÞT . Obviously, the approximate
�� � �� symmetry is realized by a much simpler condition

in theQmatrix parametrization. In summary, we have seen
that the first and second rows of Q as well as the matrix
element Q32 are already constrained in a simple way by
assuming the conservation of total neutrino flux and the
validity of approximate �� � �� symmetry. Hence, under

these two assumptions, one can simply use the values for
Q31 andQ33 to classify flavor transition models. This is the

FIG. 1 (color online). The ternary plot for representing the
flavor ratio of astrophysical neutrinos. The numbers on each side
of the triangle denote the flux fraction of a specific flavor of
neutrino. The blue point, situated on the left side of the triangle,
marks the pion source �0;� ¼ ð1=3; 2=3; 0ÞT and the red point,

situated at the lower-left corner of the triangle, marks the muon-
damped source �0;� ¼ ð0; 1; 0ÞT .
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most important advantage of Q matrix parametrization. In
fact, as will be elaborated later, this parametrization is also
very useful for discussing the effect of flux nonconserva-
tion, i.e., the case with � � 1=3.

It was first discussed in Ref. [7] that the flavor measure-
ment in neutrino telescopes is useful for studying neutrino
flavor composition at the astrophysical source (for recent
studies, see Refs. [31,32]) and neutrino flavor transition
properties during its propagation from the source to the
Earth (see also Ref. [6]). For probing flavor transition
properties of astrophysical neutrinos, the authors of
Ref. [7] considered typical astrophysical sources and ap-
plied the flavor transition matrix P (denoted by � in the
original paper) derived from the standard neutrino oscil-
lation model or flavor transition models involving new
physics for obtaining possible flavor ratios to be measured
by terrestrial neutrino telescopes. It was pointed out that
there are some flavor transition models which can produce
rather distinctive neutrino flavor ratios on the Earth com-
pared to those produced by the standard neutrino oscilla-
tion model, even with uncertainties of neutrino mixing
parameters taken into account. Hence these flavor transi-
tion models can be tested on the basis of their flavor-ratio
predictions for astrophysical neutrinos arriving on the
Earth. In our approach, we test the fundamental structure
of a given flavor transition model, namely, the Q matrix of
the model. As noted earlier, possible neutrino flavor tran-
sition models which conserve the total neutrino flux are
encompassed by possible values ofQ2i andQ3i with i ¼ 1,
2, and 3. In the �� � �� symmetry limit, only the values of

Q31 and Q33 are relevant. The matrix elements of Q can be
determined by performing fittings to the flavor-ratio
measurements in the neutrino telescopes, as will be dem-
onstrated later. The obtained ranges for these matrix ele-
ments can be used as the basis for testing any flavor
transition model.

IV. EXAMPLES

In the previous section, we have discussed the properties
of the Q matrix and their advantages. In this section, we
shall confirm such properties using a few flavor transition
models as examples. We begin by considering the standard
three-flavor neutrino oscillations. It is well known that

Posc
�� ¼ X3

i¼1

jU�ij2jU�ij2; (9)

for astrophysical neutrinos traversing a vast distance
where U�i and U�i are elements of the neutrino mixing

matrix. It is easily seen that Posc
�� ¼ Posc

��. Because of the

probability conservation, the flux of neutrinos on the
Earth also satisfies the normalization condition given by
Eq. (1). We first compute Qosc in the tribimaximal limit
[33] of neutrino mixing angles, i.e., sin2�23 ¼ 1=2,
sin2�12 ¼ 1=3, and sin2�13 ¼ 0. In this limit, the

�� � �� symmetry is exact. In fact, an exact �� � ��

symmetry amounts to the condition jU�ij ¼ jU�ij for

i ¼ 1, 2, 3 [26,27]. This condition can be realized by
having both sin2�23 ¼ 1=2 and sin�13 cos ¼ 0, which
are respected by the above tribimaximal limit of neutrino
mixing angles. Denoting Posc in this limit as Posc

0 , we have

Posc
0 ¼

5=9 2=9 2=9
2=9 7=18 7=18
2=9 7=18 7=18

0
@

1
A: (10)

Since �� � �� symmetry is exact in this case, one can see

that the second and the third rows of Posc
0 are identical, so

are the second and third columns of Posc
0 . The correspond-

ing Q matrix in this limit is given by

Qosc
0 � A�1Posc

0 A ¼
1 0 0
0 0 0
0 0 1=3

0
@

1
A: (11)

As expected, Qosc
0;11 ¼ 1 and Qosc

0;12 ¼ Qosc
0;13 ¼ 0. Further-

more, any element in either the second row or the second
column of Qosc

0 vanishes.

We can compute the correction to Qosc
0 as neutrino

mixing parameters deviate from the tribimaximal limit.
We consider such deviations for �13 and �23 while keeping
sin2�12 ¼ 1=3. In this case Posc ¼ Posc

0 þ Posc
1 þ � � �

where Posc
1 is the leading order correction in powers of

cos2�23 and sin�13. One has [34]

Posc
1 ¼

0 � ��
� �� 0
�� 0 �

0
@

1
A; (12)

where � ¼ 2 cos2�23=9þ
ffiffiffi
2

p
sin�13 cos=9with  the CP

phase. Taking into account Posc
1 , we obtain Qosc ¼ Qosc

0 þ
Qosc

1 with

Qosc
1 ¼ A�1Posc

1 A ¼
0 0 0
0 0 �3�
0 �� 0

0
@

1
A: (13)

Therefore Qosc is given by

Qosc ¼ A�1PoscA ¼
1 0 0
0 0 �3�
0 �� 1=3

0
@

1
A: (14)

Because of the correction term Qosc
1 , one can see from

Eq. (14) that the �� � �� symmetry is broken since Qosc
23

and Qosc
32 are nonvanishing. Focusing on the third row of

Qosc, we obtain 
 ¼ b=3� a� from Eqs. (5) and (14).
We next consider models of neutrino decays. Flavor

transitions of astrophysical neutrinos due to effects of
neutrino decays were discussed in Ref. [6]. The simplest
case of neutrino decays is that both the heaviest and the
middle mass eigenstates decay to the lightest mass eigen-
state. We first assume the branching ratios for the above
two decays are both 100%. Under this condition, the
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transition matrix is given by Pdec
�� ¼ jU�1j2 for the normal

mass hierarchy and Pdec
�� ¼ jU�3j2 for the inverted mass

hierarchy. The corresponding matrix Qdec then reads

Qdec ¼
1 0 0

3ðjU�jj2 � jU�jj2Þ=2 0 0
jUejj2 � ðjU�jj2 þ jU�jj2Þ=2 0 0

0
B@

1
CA; (15)

where j ¼ 1 for the normal mass hierarchy and j ¼ 3 for
the inverted mass hierarchy. One can see that Qdec

11 ¼ 1
and Qdec

12 ¼ Qdec
13 ¼ 0. Furthermore, in the limit of exact

�� � �� symmetry, one has jU�jj ¼ jU�jj such that the

elements in both the second row and the second column of
Qdec vanish. If branching ratios for the above decays are
not 100%, the resulting Qdec matrix would be different but
nevertheless gives rise to the same neutrino flavor ratio on
the Earth. It is interesting to see that all the nonvanishing
elements of Qdec are located in the first column. Hence,
following Eq. (5), the neutrino flavor ratio on the Earth is
independent of the neutrino flavor ratio at the source in this
scenario.

Let us consider another neutrino decay scenario where
only the heaviest neutrino decays. Following earlier treat-
ments, we set sin2�12 ¼ 1=3 while allowing �23 and �13 to
deviate from �=4 and 0, respectively. For the normal mass
hierarchy, we write Q0dec ¼ Q0dec

0 þQ0dec
1 where Q0dec

0 is

the leading term obtained in the limit sin2�23 ¼ 1=2 and
sin�13 ¼ 0, while Q0dec

1 is the first-order correction which
is linear in cos2�23 and sin�13. We find

Q0dec
0 ¼ 1

6

4þ 2ðrþ sÞ 0 2� 2ðrþ sÞ
0 0 0

1þ s 0 1� s

0
@

1
A; (16)

and

Q0dec
1 ¼

0 ðQ0dec
1 Þ12 0

ðQ0dec
1 Þ21 0 ðQ0dec

1 Þ23
0 ðQ0dec

1 Þ32 0

0
B@

1
CA; (17)

where r and s are the branching ratios for the decay modes
�3 ! �2 and �3 ! �1, respectively. The nonzero elements
of Q0dec

1 are given in Table I.
If �3 exclusively decays into either �2 or �1, one has rþ

s ¼ 1. In this limit, Q0dec
11 ¼ 1, Q0dec

12 ¼ Q0dec
13 ¼ 0 as ex-

pected. One also observes that the elements in the second
row and the second column of the leading matrix Q0dec

0

vanish due to �� � �� symmetry. Finally, the third row of

Q0dec gives rise to 
 ¼ ½ð1þ 3bÞ þ ð1� 3bÞs�=18þ
a½sð�1 þ �2Þ � �2�=3. Focusing on the leading order con-
tributions, one has 
 � 0 since b � 1=3; i.e., �e is either
equal or larger than ð�� þ��Þ=2 irrespective of the flavor
ratio at the source. For comparison, the standard oscillation
scenario gives 
 ¼ b=3 at the leading order, which is either
positive or negative depending on the sign of b.
For the inverted mass hierarchy, we denote r and s

as branching ratios for the decay modes �2 ! �1 and
�2 ! �3, respectively. We obtain Q00dec ¼ Q00dec

0 þQ00dec
1

with

Q00dec
0 ¼ 1

6

4þ 2ðrþ sÞ 0 0
0 0 0

r� s 0 2

0
@

1
A; (18)

and

Q00dec
1 ¼

0 ðQ00dec
1 Þ12 0

ðQ00dec
1 Þ21 0 ðQ00dec

1 Þ23
0 ðQ00dec

1 Þ32 0

0
B@

1
CA: (19)

The nonzero matrix elements of Q00dec
1 are given in Table I.

In the limit rþ s ¼ 1, Q00dec
11 ¼ 1, Q00dec

12 ¼ Q00dec
13 ¼ 0 as

expected. It is also observed that the elements in the second
row and the second column of the leading matrix Q00dec

0

vanish. Finally, the third row of Q00dec gives rise to 
 ¼
ðr� sþ 6bÞ=18� a½ð1þ r� sÞ�1 þ 2�2�=3.
As the last example, we discuss neutrino flavor transi-

tions affected by the decoherence effect from the Planck-
scale physics [35]. In a three-flavor framework, it has been
shown that [36–38]

Pdc
�� ¼ 1

3 þ ½12e��3dðU2
�1 �U2

�2ÞðU2
�1 �U2

�2Þ
þ 1

6e
��8dðU2

�1 þU2
�2 � 2U2

�3Þ
� ðU2

�1 þU2
�2 � 2U2

�3Þ�; (20)

where �3 and �8 are eigenvalues of the decoherence ma-
trix, and d is the neutrino propagating distance from the
source. The CP phase in the neutrino mixing matrix U has
been set to zero. Taking �3 ¼ �8 ¼ �, we obtain Qdc �
A�1PdcA ¼ Qdc

0 þQdc
1 where

TABLE I. Nonzero elements for subleading matrices Q0dec
1 and Q00dec

1 . The indices 12, 21, 23, and 32 in the heading of the table
denote the positions of matrix elements. r and s denote branching ratios for the decays �3 ! �2 and �3 ! �1, respectively, in the case
of normal mass hierarchy, and branching ratios for the decays �2 ! �1 and �2 ! �3, respectively, in the case of inverted mass
hierarchy. �1 � ðcos2�23 �

ffiffiffi
2

p
sin�13 cosÞ=3 and �2 � cos2�23=2� �1. To obtain these expressions, we have taken sin2�12 ¼ 1=3.

Elements of subleading matrices Q0dec
1 and Q00dec

1

12 21 23 32

Q0dec
1 �2ð1� r� sÞð�1 þ �2Þ=3 �ð1þ rÞ�1 � ð1þ sÞ�2 r�1 � ð1� sÞ�2 ½sð�1 þ �2Þ � �2�=3

Q00dec
1 2ð1� r� sÞ�1=3 ð1þ sÞ�1 � ðr� sÞ�2 ��1 � 2�2 �½ð1þ r� sÞ�1 þ 2�2�=3
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Qdc
0 ¼

1 0 0
0 0 0
0 0 e��d=3

0
@

1
A; (21)

and

Qdc
1 ¼ e��d

0 0 0
0 0 �3�0
0 ��0 0

0
@

1
A; (22)

with �0 ¼ 2 cos2�23=9þ
ffiffiffi
2

p
sin�13=9. From the definition

right below Eq. (12), we note that �0 ¼ �ð ¼ 0Þ. One can
see that Qdc

11 ¼ 1, and Qdc
12 ¼ Qdc

13 ¼ 0. Furthermore the

elements in the second row and the second column of the
leading matrix Qdc

0 vanish. In the absence of the decoher-

ence effect, i.e., � ! 0, it is seen that Qdc reduces to Qosc.
In the full decoherence case, i.e., e��d ! 0, we have � ¼
1=3, 	 ¼ 
 ¼ 0 such that �e:��:�� ¼ 1:1:1.

V. PROBING Q BY MEASURING FLAVOR RATIOS
OF ASTROPHYSICAL NEUTRINOS

We have shown that the flavor transitions of astrophys-
ical neutrinos can be parametrized by the matrix Q. As we
have argued earlier, the Q matrix is very convenient for
classifying flavor transition models. One could determine
the matrix elements Qij by measuring flavor ratios of

astrophysical neutrinos arriving on the Earth. In this re-
gard, we derive from Eqs. (5) and (8) that

3ðf�ða;bÞ�f�ða;bÞÞ=2¼ ð13Q21þaQ22þbQ23Þ=�ða;bÞ;
(23)

feða; bÞ � ðf�ða; bÞ þ f�ða; bÞÞ=2
¼ ð13Q31 þ aQ32 þ bQ33Þ=�ða; bÞ; (24)

where f� is the fraction of ��, i.e., f� � ��=ð�e þ�� þ
��Þ ¼ ��=3�. In the above equations, we have explicitly
denoted the dependence of f� on the source parameters a
and b. Furthermore we also indicated that � is generally a
function of source parameters since the total neutrino flux
is not necessarily conserved during neutrino propagations.

In the flux-conservation case, Q11 ¼ 1 and Q12 ¼
Q13 ¼ 0, which gives � ¼ 1=3. In principle, the matrix
elements Q2i in the second row of Q can be solved from
Eq. (23) by inputting three sets of f�ða; bÞ measured
from three different astrophysical sources. Here we
assume precise knowledge of parameters a and b from
each source. The matrix elements Q3i in the third row of
Q can be solved from Eq. (24) in a similar way. In the case
that �� � �� symmetry is not significantly broken, one

expects Q21, Q22, and Q23 are all suppressed. Therefore,
it is more involved to probe the second row of Q than to
probe the third one. To probe the latter, we have

feða; bÞ=3� ðf�ða; bÞ þ f�ða; bÞÞ=6 � 1
3Q31 þ bQ33;

(25)

since Q32 is also suppressed due to the approximate
�� � �� symmetry. We note that f�ða; bÞ on the left-

hand side of Eq. (25) only depends on b. It is possible to
solve for Q31 and Q33 if the measurement on fe � ðf� þ
f�Þ=2 can be performed with respect to two different
astrophysical sources where the value of the b parameter
in each source is known.
In the case of flux nonconservation, the function �ða; bÞ

is not known since it is difficult to determine the absolute
flux of astrophysical neutrinos at the source. Hence one
cannot directly solve for Q2i and Q3i from Eqs. (23) and
(24) by inputting f�ða; bÞ from measurements. On the
other hand, the signature for � � 1=3 could still be de-
tected by the following consistency analysis. We recall
from Eq. (24) that the third row of Q is related to the
measurement by

feða; bÞ � ðf�ða; bÞ þ f�ða; bÞÞ=2
� ð13Q31 þ bQ33Þ=�ða; bÞ: (26)

As it was just argued, one could set � ¼ 1=3 in the above
equation and invoke two astrophysical sources to solve for
Q31 andQ33. However, taking this set ofQ31 andQ33 as an
input, one expects that the right-hand side of Eq. (26) is
likely to be inconsistent with the left-hand side obtained
from the third astrophysical source.
It is clear that the knowledge of the neutrino flavor ratio

at the source is crucial for probing the matrix Q. Previous
studies [39,40] pointed out that this ratio is energy depen-
dent for a general astrophysical source. For parent pions
with an E�2 energy spectrum, the flavor ratio of neutrinos
arising from the decays of these pions and the subsequent
muon decays is �0;e:�0;�:�0;� ¼ 1:1:86:0 at low energies

[41] where energy losses of pions and muons in the source
are negligible. The ratio�0;e=�0;� however decreases with

the increase of muon (pion) energy and eventually ap-
proaches zero. This behavior results from the above-
mentioned energy losses which are important at higher
energies. Recently, a systematic study on possible neutrino
flavor ratios from cosmic accelerators listed on the Hillas
plot was initiated [42]. The neutrino flavor ratio at the
source depends on the spectrum index of injecting protons,
the size of the acceleration region, and the magnetic field
strength at the source. In some regions of the above-
mentioned parameters, the neutrino flavor ratios are energy
dependent, while in some other parameter regions they
could behave as those of a pion source or those of a
muon-damped source, which are both energy independent.
In the following, we illustrate the determination ofQ31 and
Q33 by measuring flavor ratios of astrophysical neutrinos
arriving on the Earth from a pion source and a muon-
damped source, respectively.
To determineQ31 andQ33, we assume an exact �� � ��

symmetry so that �� ¼ ��. The measurement of muon

track to shower ratio [8] in a neutrino telescope such as

FLAVOR TRANSITION MECHANISMS OF PROPAGATING . . . PHYSICAL REVIEW D 82, 103003 (2010)

103003-5



IceCube can be used to extract the flux ratio R �
��=ð�e þ��Þ. Clearly R depends on the source parame-

ter b and the matrix elements Q31 and Q33 as can be seen
from Eq. (25). One can in principle disentangle Q31 and
Q33 by measuring R from two sources with different b
values, say, a pion source with b ¼ 0 and a muon-damped
source with b ¼ �1=6. Taking into account experimental
errors in determining R, the ranges for Q31 and Q33 in a
given confidence level can be determined by the formula

�2 ¼
�
R�;th � R�;exp

�R�;exp

�
2 þ

�
R�;th � R�;exp

�R�;exp

�
2
; (27)

where R�;exp and R�;exp are experimentally measured flux

ratios for neutrinos coming from a pion source and muon-
damped source, respectively, while R�;th and R�;th,

which depend on Q31 and Q33, are theoretically predicted
values for R� and R�, respectively. Furthermore, �R�;exp

¼
ð�R�=R�ÞR�;exp and�R�;exp

¼ ð�R�=R�ÞR�;exp with�R�

and �R� the experimental errors in determining R for

neutrinos coming from a pion source and muon-damped
source, respectively. One does not need to include uncer-
tainties of neutrino mixing angles �ij and CP phase  in

Eq. (27) since their effects are already embedded in
Q31 and Q33.

Let us first take the input (true) flavor transition mecha-
nism to be a standard neutrino oscillation model with

neutrino mixing parameters taking the tribimaximal
values. One expects that R�;exp and R�;exp are around

0.50 and 0.64, respectively. Applying the �2 analysis,
Eq. (27), with given accuracies �R�;exp

and �R�;exp
, the fitted

1� and 3� ranges for Q31 and Q33 are presented in Fig. 2.
We note that the left panel is obtained with �R�=R� ¼
�R�=R� ¼ 10% while the right panel is the result of

taking �R�=R� ¼ �R�=R� ¼ 20%. For both measure-

ment accuracies, the neutrino decay scenario given by
Eq. (15) can be ruled out at the 3� level for both mass
hierarchies. We stress that the confidence ranges in
Fig. 2 can be used to test any model with specific values
for Q31 and Q33.
We next consider the case where the input flavor

transition model is the neutrino decay scenario given by
Eq. (15) with normal mass hierarchy. This model corre-
sponds to ðQ31; Q33Þ ¼ ð0:5; 0Þ for neutrino mixing pa-
rameters taking the tribimaximal values. Hence one
expects that R�;exp and R�;exp are both around 0.2.

Applying the �2 analysis, we obtain the fitted 1� and 3�
ranges for Q31 and Q33 as shown in Fig. 3. Once more, the
left panel is obtained with �R�=R� ¼ �R�=R� ¼ 10%,

while the right panel results from �R�=R� ¼ �R�=R� ¼
20%. For both cases, it is seen that the standard neutrino
oscillation model and the neutrino decay model with
ðQ31; Q33Þ ¼ ð�0:5; 0Þ (inverted mass hierarchy) can be
ruled out at the 3� level.

FIG. 2 (color online). The fitted 1� (solid line) and 3� (dashed line) ranges for Q31 and Q33. The left panel is obtained with
measurement accuracies �R�=R� ¼ �R�=R� ¼ 10%, while the right panel is obtained with �R�=R� ¼ �R�=R� ¼ 20%. The

circle describes the best-fit parameter values Q31 ¼ 0 and Q33 ¼ 0:33, corresponding to the input flavor transition model. For
reference, the parameter values for the neutrino decay scenario given by Eq. (15) are denoted by the triangle and the square,
respectively, for normal and inverted mass hierarchies. The former corresponds to ðQ31; Q33Þ ¼ ð0:5; 0Þ, while the latter corresponds to
ðQ31; Q33Þ ¼ ð�0:5; 0Þ for neutrino mixing parameters taking the tribimaximal values.
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FIG. 3 (color online). The fitted 1� (solid line) and 3� (dashed line) ranges for Q31 and Q33. The left panel is obtained with
measurement accuracies �R�=R� ¼ �R�=R� ¼ 10%, while the right panel is obtained with �R�=R� ¼ �R�=R� ¼ 20%. The

triangle describes the best-fit parameter values, ðQ31; Q33Þ ¼ ð0:5; 0Þ, corresponding to the input flavor transition model. The circle
corresponds to the standard neutrino oscillation model, while the square corresponds to the neutrino decay scenario given by Eq. (15)
with inverted mass hierarchy.

FIG. 4 (color online). The fitted 1� (solid line) and 3� (dashed line) ranges for Q31 and Q33. The left panel is obtained with
measurement accuracies �R�=R� ¼ �R�=R� ¼ 10%, while the right panel is obtained with �R�=R� ¼ �R�=R� ¼ 20%. The

square describes the best-fit parameter values, ðQ31; Q33Þ ¼ ð�0:5; 0Þ, corresponding to the input flavor transition model. The circle
corresponds to the standard neutrino oscillation model, while the triangle corresponds to the neutrino decay scenario given by Eq. (15)
with normal mass hierarchy.
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Finally, if the input flavor transition model is the neu-
trino decay scenario given by Eq. (15) with inverted mass
hierarchy, i.e., ðQ31; Q33Þ ¼ ð�0:5; 0Þ, one expects that
R�;exp and R�;exp are both around 1.0. Applying the �2

analysis, we obtain the fitted 1� and 3� ranges forQ31 and
Q33 as shown in Fig. 4. For �R�=R� ¼ �R�=R� ¼ 10%

(left panel), it is seen that the other two models displayed
on the figure can be ruled out at the 3� level. However, for
�R�=R� ¼ �R�=R� ¼ 20% (right panel), the standard

neutrino oscillation model cannot be ruled out at the
same confidence level.

VI. CONCLUSION

In summary, we have proposed to parametrize the flavor
transitions of propagating astrophysical neutrinos by the
matrix Q, which is related to the usual flavor transition
matrix P by Q ¼ A�1PA where A is given by Eq. (6). We
have argued that it is much easier to classify flavor tran-
sition models by theQmatrix parametrization, where each
row of Q carries a clear physical meaning as illustrated by
Eq. (5). We have also argued that the signature for flux
nonconservation might be detectable if it is possible to
observe sufficient numbers of astrophysical neutrino
sources with different flavor ratios. For the case of flux
conservation, the above observations can probe the second
and the third rows of matrix Q in a model independent
fashion.

For illustration, we considered the determination of the
Q matrix in the exact �� � �� symmetry limit. The rele-

vant matrix elements in this case are Q31 and Q33. We
proposed to determine them by measuring the flux ratio
R � ��=ð�e þ��Þ for astrophysical neutrinos coming

from a pion source and those coming from a muon-damped
source, respectively. We fittedQ31 andQ33 to the measured
flux ratios R�;exp and R�;exp using Eq. (27). The ranges for

Q31 andQ33 are presented up to the 3� confidence level for
three different input models for neutrino flavor transitions.

We have found that the measurement accuracies
�R�=R� ¼ �R�=R� ¼ 10% are sufficient to discrimi-

nate among the standard neutrino oscillation model and
neutrino decay scenario given by Eq. (15) for normal and
inverted mass hierarchies. We reiterate that the confidence
ranges in Figs. 2–4 can be used to test any flavor transition
model with specific values for Q31 and Q33.
Taking a neutrino source flux E2

�e
dN�e

=dE�e
¼

0:5E2
��
dN��

=dE��
¼ 10�7 GeV cm�2 s�1, which is

roughly the order of the Waxman-Bahcall bound [28], the
accuracy �R=R ¼ 10% is reachable by a decade of data
taking in Icecube [8], as stated in the beginning of this
article. However, we stress that the Waxman-Bahcall
bound is for diffuse neutrino flux. The flux from an indi-
vidual point source is smaller. Hence it could take more
than a decade to reach a 10% accurate measurement on R
arising from a point source. The radio extension of IceCube
[5] is expected to accumulate neutrino events at a much
faster pace. It is crucial to study the efficiency of flavor
identification in this type of detector.
In this work, the Q matrix is probed by assuming an

exact �� � �� symmetry and a precise knowledge of the

neutrino flavor ratio at the source. Away from the �� � ��

symmetry limit, the second row ofQ andQ32 shall become
relevant in addition to Q31 and Q33. Furthermore, the
statistical analysis outlined by Eq. (27) should be refined
once the uncertainty of the neutrino flavor ratio at the
source is taken into account. We shall address these issues
in a future publication.
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