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ABSTRACT: The Slewing Mirror Telescope (SMT) was proposed for rapid response to prompt
UV/optical photons from Gamma-Ray Bursts (GRBs). The SMT is a key component of the Ultra-
Fast Flash Observatory (UFFO)-pathfinder, which will be launched aboard the Lomonosov space-
craft at the end of 2013. The SMT utilizes a motorized mirror that slews rapidly forward to its
target within a second after triggering by an X-ray coded mask camera, which makes unnecessary
a reorientation of the entire spacecraft. Subsequent measurement of the UV/optical is accom-
plished by a 10 cm aperture Ritchey-Chrètien telescope and the focal plane detector of Intensified
Charge-Coupled Device (ICCD). The ICCD is sensitive to UV/optical photons of 200–650 nm in
wavelength by using a UV-enhanced S20 photocathode and amplifies photoelectrons at a gain of
104–106 in double Micro-Channel Plates. These photons are read out by a Kodak KAI-0340 in-
terline CCD sensor and a CCD Signal Processor with 10-bit Analog-to-Digital Converter. Various
control clocks for CCD readout are implemented using a Field Programmable Gate Array (FPGA).
The SMT readout is in charge of not only data acquisition, storage and transfer, but also control of
the slewing mirror, the ICCD high voltage adjustments, power distribution, and system monitor-
ing by interfacing to the UFFO-pathfinder. These functions are realized in the FPGA to minimize
power consumption and to enhance processing time. The SMT readout electronics are designed
and built to meet the spacecraft’s constraints of power consumption, mass, and volume. The entire
system is integrated with the SMT optics, as is the UFFO-pathfinder. The system has been tested
and satisfies the conditions of launch and those of operation in space: those associated with shock
and vibration and those associated with thermal and vacuum, respectively. In this paper, we present
the SMT readout electronics: the design, construction, and performance, as well as the results of
space environment test.

KEYWORDS: Detector control systems (detector and experiment monitoring and slow-control sys-
tems, architecture, hardware, algorithms, databases); Digital electronic circuits; Space instrumen-
tation; Detectors for UV, visible and IR photons
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1 Introduction

Launched in 2004, Swift space observatory has provided first and a variety of multi-wavelength
information on gamma-ray bursts (GRBs; [1]) including UV/optical light curves in the sub-minute
time scale in spite of a limitation in the response time [2]. After the Swift has localized a GRB
through X-ray detection by its Burst Alert Telescope, it takes about a minute to reorient the en-
tire spacecraft to the GRB location coordinates [3]. However, in the intervening time valuable
information may be lost. In order to capture UV/optical photons from GRBs nearly at the same
time as X-ray detection, the Ultra-Fast Flash Observatory (UFFO) has been proposed as a space
mission. To achieve these extremely fast response times, the UFFO is based upon the concept
of a Slewing Mirror Telescope (SMT) [4]. A pilot experiment, the UFFO-pathfinder, employs a
novel approach of the beam steering: the utilization of a motorized mirror to redirect photons from
the GRB to a UV/optical telescope on axis [5]. The UFFO-pathfinder consists of two telescopes;
the wide field-of-view (FOV) X-ray UFFO Burst Alert & Trigger Telescope (UBAT) for localiza-
tion of GRB event [6], and the SMT for the rapid measurement of a UV/optical within a narrow
FOV [7, 8]. Additionally, the UFFO Data Acquisition system (UDAQ) controls each telescope of
the UFFO-pathfinder and interfaces with the satellite [9].

From a functional perspective, the SMT has two subsystems. One is an opto-mechanical
system detailed in [7], and the other consists of readout electronics including a focal plane detector
and a slewing mirror. The FOV of the focal plane detector is 17×17 arcmin2 determined by SMT
optics, and it is wide enough to contain a potential source of GRB detected by the UBAT with a
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localization accuracy of 10 arcmin in 7 σ . The mirror rotation angle is ±35 degree, and thus the
effective coverage of SMT extends to 70×70 degree2 that corresponds to the half-coded FOV of
UBAT. An Intensified Charge-Coupled Device (ICCD) with double multi-channel plates (MCPs)
was adopted as the focal plane detector, like the Swift’s UV/optical telescope, to observe light
from the distant GRBs. To meet the UFFO’s requirements for achieving the fastest yet response
to prompt photons from GRBs, we chose commercial rotary encoders and stepping motors with
sealed bearing systems. The slewing mirror is driven by two gimbal motors that provide a 1 sec
response over the entire FOV with sub-arcsec positioning accuracy and a settling time of less than
350 msec. These electric motors which drive the gimbal-mounted mirror are simple, robust, and
space qualified.

The readout electronics controls the slewing mirror, reads out the ICCD as well as the entire
SMT system, monitors housekeeping sensors, and communicates with the UDAQ. As with other
space experiments, the UFFO pathfinder has substantial limitations both in power consumption
and real-time processor speed. Even more so, the electronics must be compact due to volume con-
straints, especially because, unlike previous GRB missions, the proposed device contains several
electronics modules onboard [3, 10, 11]. Additionally, the SMT requires fast algorithms to slew
the mirror in response to the UBAT trigger. These requirements are satisfied by employing a Field-
Programmable Gate Array (FPGA) in place of CPU. The FPGA includes a variety of functions
required for the SMT readout and control as well as the interface to the payload system. Moreover,
in order to ensure the best performance of the ICCD for our application, the control of clock signals
and high voltages is customized in the FPGA. We also tested the readout electronics in the extreme
environments simulating those that will be encountered during a space mission, and they passed all
requirements for operation in space.

This paper focuses on the design and construction of the SMT readout, and is organized as
follows: section 2 explains: the overall architecture of the SMT’s readout and control system; the
CCD and its readout, data taking and storage; and the monitoring and control of the slewing mirror
essential to the SMT. In sections 3 and 4, we report on the results of the performance and space
environment tests, respectively. Finally, we summarize the results in section 5.

2 Readout and control electronics of SMT

The main goal of the SMT readout is to achieve rapid mirror slewing, control of the focal plane de-
tector, and fast readout, and thus, ultimately, to take the data with fine time resolution immediately
after the trigger. The readout electronics include the following functions:

• Motor control and encoder calibration

• Generation of the CCD control clocks

• Adjustment of high voltage to control the ICCD gain

• Data acquisition and storage

• Communication with the UDAQ to send data and to receive commands

• Monitoring the housekeeping data including temperature and current.

– 2 –
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Figure 1. Architecture of the SMT readout and control, which shows the trigger flow (double line) from the
UDAQ, the data flow (single line) from the ICCD to the UDAQ, and the control signals (dashed lines).

The SMT readout is controlled by an ACTEL A3P100 0-PQ208 FPGA chip. The most critical
requirements of the SMT are the fast processing time, as stipulated for the UFFO, and as is typical
in space applications, the minimization of the power consumption. Both requirements are accom-
plished by using, in place of a traditional microprocessor, an FPGA, which consumes less than 1W
to program all functions.

Figure 1 shows the readout and control architecture of the SMT. The architecture has 5 logic
blocks, each in charge of its own hardware: the Motor control logic (MCL) regulates the motor and
reads the encoder; the Readout Control Logic (RCL) governs the ICCD control and data acquisi-
tion, which includes the CCD readout. The System Control Logic (SCL) is the main block of the
SMT readout as well as the control that manages and the interactions among all logic blocks, itself
included, and serves additionally to control the SMT memory and processors. The SCL includes
the Reset Logic for the internal system reset, the Trigger Decision Logic (TDL) for the action of the
slewing mirror and ICCD by trigger decision, the Coordinates Control Logic (CCL) for decoding
the coordinates value, the Gain Control Logic (GCL) for the ICCD gain adjustment, the Exposure
time Processing Logic (EPL) for the exposure time setting to optimize the measurement of GRB
light, and the Housekeeping Logic (HKL) for monitoring of current, voltage, and temperature of
the electronics boards. All the logic blocks in the FPGA include the reset signal as an input source,
and to achieve system stabilization, they are controlled by the Reset Logic. After the system turns
on, the Reset Logic counts the time and waits until the FPGA power is stable, and then it pulls
down the reset signals of the entire logic block. To write or read the data, the Data Processing
Logic (DPL) manages the external memory. The Internal Interface Logic (IIL) is responsible for
communication between the UDAQ and the SMT system.

2.1 Detector and CCD readout

As with the Swift, the ICCD has been adopted as the SMT’s focal plane detector. This device con-
sists of an intensifier and a CCD coupled by a fiber optics taper. The intensifier is comprised of an
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Figure 2. Structural diagram of the customized ICCD for the SMT.

input window, a photocathode, double Micro-Channel Plates (MCPs) with a two-stacked structure,
and a phosphor screen, as shown in figure 2 and detailed below. The intensifier is optimized over
the 200–650 nm band as determined by the photocathode and the detector input window. Photons
entering the ICCD are converted into electrons at the photocathode and are subsequently multiplied
by a factor of up to 106 within the MCPs. Clusters of these electrons strike the phosphor screen,
which changes the amplified electrons into visible light, and this light reaches the CCD sensor
through the fiber optic taper.

The input window is made of quartz, a material which limits the spectral response of the pho-
tocathode at short wavelengths, i.e. to 165 nm or greater at the lower limit. Nevertheless, the UV-
enhanced S20 photocathode beneath the input window provides better sensitivity at UV/optical
wavelengths (<350 nm) than other photocathodes; the spectral response of the photocathode is
shown in figure 3. The spectral sensitivity is higher than 50 mA/W for λ < 450 nm, and the maxi-
mal sensitivity is 65.6 mA/W at 280 nm, which corresponds to a quantum efficiency of about 29.1%.
The photocathode has a dark current of about 500 electron/cm2/sec at room temperature contributed
chiefly by thermal noise. This dark rate can be negligible for pixels of 23.68×23.68 µm2 at an ex-
posure time of 20 msec.

An electron from the photocathode enters the MCPs and produces secondary electrons upon
striking the inner walls of the MCPs. These secondary electrons are further accelerated by a voltage
applied across the MCPs to produce additional multiplication; the electron multiplication factor per
MCP is 1000 average. We have chosen dual MCPs in order to better discriminate the signal of the
faint source from the background noise. By providing dual MCPs, our ICCD achieves gains of up to
1.2×106 W/W at 480 nm and can also be operated as a photon counting detector. The measurement
of faint sources requires long exposure times, which in turn increase accumulated noise. Therefore,
high amplification for given photons is relatively free of random noise. Each MCP has a diameter
of 25 mm, and its pore size is 10 µm, with a pitch size of 12 µm.

Fast readout requires a phosphor with a rapid decay time. If the decay time is slower than
the readout time, the image taken by CCD will be distorted by a smearing effect. We use a P46
phosphor screen with a decay time of 300 nsec and a light emission range of 490–620 nm. Because
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Figure 3. Spectral response and quantum efficiency of the ICCD photocathode as a function of wavelength
(measured by Proxitronic Detector Systems GmbH). The solid line indicates the spectral sensitivity and the
dashed line the quantum efficiency.

the diameter of the MCPs is larger than the active CCD area, the phosphor is connected with the
CCD by a fiber optics taper coupling ratio of 3.2:1. The fiber coupling blocks out stray light and
minimizes light loss; consequently, this method of coupling between phosphor and CCD ensures
much a better signal to noise (SNR) ratio than the lens coupling method. Furthermore, fiber cou-
pling allows a strong fixation and robust structure for the ICCD and makes it more suitable for
space application where no changes are possible once the structure is set up.

Light emitted from the phosphor screen passes through the fiber optics taper and is read out
by the CCD. We have chosen a commercial interline CCD, the Kodak KAI-0340, which provides
a fast pixel readout rate up of to 40 MHz. The CCD dimensions are 640×480 pixels; however, for
our observations we employ only 256×256 pixels of the total resolution. Likewise, as described
in the following section, the CCD readout has been customized for our application. Therefore, the
size of focal plane detector, i.e. size of the ICCD, is 6.062×6.062 mm2 when the coupling ratio is
taken into account, and the dimensions of the individual pixels are 23.68×23.68 µm2. The angular
resolution for each pixel is 4×4 arcsec2.

The CCD readout is a new design, intended chiefly to meet the requirements for application
in space, i.e. power consumption and volume, and is connected to the spacecraft by a bus inter-
face. The readout has several processors to provide various control clocks for CCD operation and
to process the signal from the ICCD. We have chosen an FPGA to implement the readout and
control of the CCD, which allows us to make compact system. The ICCD is divided physically
into three functional boards, as shown in figure 4; a CCD-sensor board for the mount of the CCD
chip, a clock-generator board for CCD control, and a SMT-DAQ board for data acquisition and
system control.

The CCD-sensor board is required to bridge the ICCD and the readout boards both mechani-
cally and electronically. This sensor is placed at the back of the ICCD and provides a mechanical
decoupling for the ICCD from the readout boards, and contains a delicate structure of fiber cou-
plings inside which offer protection against the shock and vibration expected from the launch of
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Figure 4. ICCD combined with the CCD sensor board (left) the clock-generator board (center) and the
SMT-DAQ board (right).

satellite. The board’s size is 35×40 mm2, and it contains a socket for the insertion of the CCD chip.
The CCD output signal is buffered by an emitter follower before it is sent to the clock-generator
board through a coax cable and eventually to the SMT-DAQ board.

The clock-generator board generates a variety of 20 MHz control signals to operate the CCD.
The board drives 4 horizontal clocks, 4 vertical clocks, a reset clock, 2 fast dump signals used for
the selection of an imaging area from the CCD’s 640×480 pixels, a signal for electronic shuttering,
and a voltage signal for protection against electrostatic discharge. These clocks and signals are
transmitted to the ICCD through the CCD-sensor board.

As shown in figure 4(c), the SMT-DAQ board is made of an FPGA, an SRAM, a circuit to con-
trol the ICCD gain, an interface circuit to slew the mirror, two front-end circuits for the processing
of the analog signal from CCD, and two sensors for monitoring board temperature and current.

A fast pixel readout rate, i.e. a high frame rate, is possible in the interline transfer type of
CCD. However, such fast rates limit the capacity of the charge held in a pixel, illustrating the trade-
off between readout rate and dynamic range. We employ a 20 MHz rate instead of the allowed
maximum of 40 MHz, and as a result we are able to extend the maximum charge capacity to a
value of 40,000 photoelectrons. Additionally, power consumption is reduced substantially at this
relatively slow frame ate.

The CCD requires multiple clocks related to the readout of pixel, line and frame, and their
control signals. These are organized in three controllers shown in figure 5 The line controller
generates a line-readout clock and a line valid by counting the pixel-readout clock cycles, while the
horizontal clock block generates 4 horizontal clocks and a reset clock. A vertical clock corresponds
to 256 horizontal clocks. The frame controller produces a frame-readout clock and a frame valid by
counting the line-readout clock cycles, while the vertical clock block produces the 4-type vertical
clocks. A frame clock corresponds to 256 vertical clocks.

Analog signals from CCD sensor are processed in an AD9840A chip indicated in figure 8 as
the CCD signal processor (CSP). The CSP includes a 10-bit analog to digital converter (ADC). Data
and image processing in the CSP are performed by the CSP controller of the FPGA via a 3-wire
serial interface. The CSP controller also adjusts the gain for the ADC on the basis of predefined
parameters for CSP chip and black level adjustment.

– 6 –
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Figure 5. Block diagram depicting how the CCD readout system of the FPGA generates clocks and provides
them for the CCD chip. These clocks are used to control the CCD chip and read out the charge in each pixel.
The blue box shows how the pixel clock is related to the line clock and the frame clock.

2.2 Data acquisition and storage of SMT

The ICCD data is read out by a 10-bit ADC. However, it is resized as 8-bit data to optimize the
bit size of SRAM and to reduce data size. When the ICCD data value is low and the data do not
require large numbers, then the 2 bits from Most Significant Bits (MSB) are cut. Otherwise, 2 bits
are removed from the Least Significant Bits (LSB). Likewise, The DPL determines the reasonable
bit range for the ICCD data and records the resizing factor in the housekeeping data. Consequently,
the ICCD data size becomes 512 kbits, and 32 frames are stored in the 16 Mbits SRAM. The
housekeeping data is updated every frame, and its data size is 4 kbits. The DPL which manages the
memory to read or write the data arranges the ICCD data in the SRAM and the housekeeping data
in the First-In, First-Out (FIFO), and combines both into a single frame.

At the initial trigger, the exposure time is same as the integration time for a single frame.
At that time, the SRAM is full in 640 msec because of limitation of storage, and the dead time
which takes to clear the memory occurs before next exposure. Additionally, the readout rate
is 20 Mbytes/sec at the initial trigger, but the transfer rate between the UDAQ and the SMT is
2 Mbytes/sec. Therefore, to prevent problems, the DPL controls the data transfer by sending the
data to the UDAQ while receiving the data from the ICCD asynchronously.

2.3 Control of SMT and interface with UFFO Data acquisition system

The SMT receives the trigger and control signals from the UDAQ, and also transfers its physical
data to the UDAQ. The communication between the SMT and the UDAQ is accomplished through
a Serial Peripheral Interface bus (SPI). The IIL formats the UDAQ’s serial commands as parallel,
sends commands to the inner logic of the SMT, and then returns the data to UDAQ, after changing
parallel-type data back to serial. The data from UDAQ includes the commands, coordinates and
time information, which the IIL decodes according to their indicators and classifies before sending
them to the SCL.

– 7 –
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Table 1. Exposure time defined for one GRB event.

Session Exposure time (sec) Number of frames Duration time (sec)
1 0.02 20.00 0.40
2 0.20 38.00 7.60
3 1.00 42.00 42.00
4 5.00 50.00 250.00
5 10.00 70.00 700.00
Total 220.00 1,000.00

Table 2. SMT data size.

Data size of one frame Data size of one GRB event Data size per day
ICCD Housekeeping
256 ch×256 ch×8 bits 4 kbits 516 kbits×220 frames 113,520 kbits×15 events
516 kbits 113,520 kbits ∼ 208 Mbytes

After the UFFO power turns on, the UDAQ sends the SMT the state signal which initializes the
SMT’s electronics. Then, the SCL which manages the sequence of the SMT operation powers up
the slewing mirror system so that the motor initializes and stabilizes. Next, when the SMT receives
a trigger signal from UDAQ, the SMT classifies the trigger type as either UBAT or an external
trigger given by the other X-ray detection payload on the Lomonosov spacecraft. Meanwhile, the
motor state remains in stand-by mode as the x, y, and z coordinates of the target, the position of
which is specified with respect to the position of UFFO-pathfinder, are delivered by the UDAQ.
When the motor slews to the target, the ICCD power is on, the CCD readout system is ready, and
the ICCD begins taking the data.

The integration time is adjusted through electronic shuttering by the CCD chip and by default
is set to 20 msec. This value is the same as the readout time for a single frame and is also set as
the default exposure time. However, as determined from UV/optical light curves, some measure-
ments show that GRB intensity has shown violent variation occurring at the initial triggering time,
followed by a gradual decline in light intensity. Thus, the SMT captures data over 5 sets or ses-
sions at the 5 different exposure durations specified in table 1. During the first session, 20 frames
with exposure times of 20 msec are taken during the 400 msec immediately following the UBAT’s
transmission of the GRB position information to the SMT. After that, for the second session, the
exposure time is raised to 200 msec by summing every 10 default frames. During the second ses-
sion, the SMT captures 38 frames over a span of 7.6 sec. Likewise, the exposure time for each
subsequent session is set to the duration predefined for that session. As a result, for any single
event, the data of 220 frames are taken for a total duration time of 1000 sec.

The satellite moves in a Sun-synchronous orbit at an altitude of 550 km, makes 15 orbits per
day at 96 minutes per orbit. The SMT generates 113,526 kbits of data per event, and selects a good
candidate event per orbit. Therefore, the total data size of SMT will be ∼208 Mbytes/day, as sum-
marized in table 2. The data of 300 Mbytes/day in total allocated for UFFO-pathfinder, including
the one from UBAT, will be transferred to ground stations via the UDAQ and the spacecraft.

– 8 –
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2.4 Housekeeping

The SMT readout monitors the currents and the temperatures from sensors once per frame, and logs
trigger information, including the GMT time triggered, the coordinates, and trigger identification,
the received commands, the position of the mirror, the high voltage value of the ICCD, exposure
time, and frame identification. The SMT writes the housekeeping data in front of every frame; thus
the HKL updates and holds the data in the internal memory which is the FIFO of the FPGA, and
for each frame the housekeeping data is transferred to the UDAQ.

2.5 Slewing mirror control

The motors operate in the following 6 states, or modes: the safe, initialization, stand-by, targeting,
calibration, and sleep modes. Each mode determines the mirror position or its function. The motor
state sequence is shown in figure 6.

Once the power is on, the motor enters safe mode until the SMT readout determines that the
spacecraft has entered the night phase of its orbit. While in safe mode, the mirror remains at the
position defined by 0 degree on the A- and B-axes in order to protect the ICCD from sunlight
reflected by the slewing mirror. Additionally, should the SMT encounter an emergency situation
in which the ICCD may be damaged, the motor state will immediately revert to safe mode. This
sequence applies for all motor states. Following operation in safe mode, the motor state changes
to initialization mode, activates the motor’s encoder, sets parameters, and shifts automatically into
stand-by mode. On the other hand, if the emergency situation terminates without power recycling,
the motor state shifts directly into stand-by mode without first changing into initialization mode.

Upon entering stand-by mode, the motor moves the mirror to 0 degree on the A-axis and 45
degree on the B-axis. The advantage of maintaining the stand-by position at the angles just defined
is that the rotation angle to the target decreases and, as a result, the slewing time is also reduced.
When the GRB is found within our FOV during stand-by mode, the coordinate information is
delivered to the FPGA, and the motor state changes to targeting mode. The mirror control logic
in the FPGA calculates how many degrees the mirror must be tilted, and transfers the equivalent
value of clocks to the slewing mirror system to direct the mirror forward to the target. After the
motor stops, if there is no additional trigger from the UBAT within 10 seconds, the capture of the
preceding event is concluded, and the motor state reverts to stand-by mode. The FPGA’s motor
control system always informs its readout control system as to whether the motor is moving or
has already moved, because, in the event that motor should stop during targeting mode, the CCD
shutter is still operational. When the mirror is slewed onto the target, the SMT readout including
ICCD is ready, and starts to capture data.

In calibration mode, the encoder values are scanned and the motor position is calibrated with
respect to the difference between the encoder value and the measured position. This operation is
performed along the schedule predefined in the FPGA, or on command. After all procedures have
been carried out, if there is no further task, to save power the motor state shifts via safe mode into
sleep mode.

The orientation of the mirror with respect to the standby position can be read by encoders
which are directly mounted on a mirror rotation axis via an axis-coupling, as shown in figure 7(a).
Two encoders are mounted for the A- and B-axes. Analog sine/cosine outputs from these encoders
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Figure 6. State and transition of slewing mirror system. Each mode determines the mirror position or its
function. The ICCD is activated after the motor stops at the stand-by mode.

are converted to digital outputs on the decoders after interpolation for better precision. RS-422
differential line driver outputs from the decoder can be read using Synchronous Serial Interface
(SSI) data format.

The motor rotates with respect to A and B axes that are defined relative to the platform of the
UFFO-pathfinder payload as shown in figure 7(b). The motor control logic calculates the angles
to be rotated using a matrix for conversion between the UFFO coordinates and the slewing mirror
system coordinates. When the UBAT detects a GRB candidate, it sends a trigger signal and the
location specified in celestial coordinates to the SMT via the UDAQ interface. The SMT reads the
current mirror position and calculates the slewing angle to the target position within the FPGA.
After tilting the slewing mirror forward to the target by that angle, the SMT begins reading the
UV/optical data.

In order to calculate the motor rotation angles, the coordinate is defined with regard to a target.
The target position determined relative to the UFFO coordinates is −→vt = (x,y,z), and the mirror
angular position defined relative to the normal vector of mirror surface is −→vm = (xm, ym, zm). The
optical axis of the telescope specified in terms of the mirror is −→vd = (1,0,0). Therefore, using the
law of reflection, −→vm can be obtained as eq. (2.1).

−→vm =
−→vd +−→vt∣∣−→vd + −→vt

∣∣ =
(x+1,y,z)√

(x+1)2 + y2 + z2
(2.1)

The pointing vector,−→vm, can be considered as a combination of two motor rotations. When the
mirror is parallel to the baseplate, the normal vector of the mirror is −→vm = (0,1,1). For a rotation
of the mirror by A and B, −→vm may be expressed by two consecutive rotations as

−→vm =

 cosA 0 sinA
0 1 0

−sinA 0 cosA


 1 0 0

0 cosB −sinB
0 sinB cosB


 0

0
1

=

 cosAsinB
−sinB

cosAcosB

 , (2.2)
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Figure 7. (a) The composition of slewing mirror system. The motor driving board is handled by readout
electronics of the SMT (b) the x, y, and z coordinates are defined for the UFFO coordinate system, and A
and B coordinates for the slewing mirror coordinate system.

Figure 8. The angular error distributions taken by a linear interpolation with the look-up array size of N=200
and of N=400. For greater precision, a larger array size is needed. Still, N=200 is adequate for a 4 arcsec
precision in mirror angle coverage during targeting mode; the value covers from -17 degree to 17 degree on
the A axis, and -62 degree to -28 degree on the B axis.

where the first term is the rotation by A around the x-axis and the second term is the rotation by B
around the y-axis. Combining eq. (2.1) and eq. (2.2), the motor rotation angles, A and B, may be
calculated as

A = arcsin

(
x+1√

(x+1)2 + z2

)
, B = arcsin

(
−y√

(x+1)2 + y2 + z2

)
. (2.3)

To calculate the inverse sine function in the FPGA, we employ an interpolation method with a
look-up table for an approximate result. Were we to use a lookup table by itself, a huge amount of
memory would be necessary to achieve the precision required for the slewing the mirror, 4 arcsec
per motor minimum step. However, this interpolation method offers a feasible solution using a
lookup table with a small array size as in figure 8.

– 11 –



2
0
1
3
 
J
I
N
S
T
 
8
 
P
0
7
0
1
2

Figure 9. The ICCD image focused by the SMT RC telescope from parallel beam (left). The x- and y-
profile plots of image (right) are shown.

3 Performance of SMT readout

3.1 Integration test of SMT readout

We have tested the system and logic chain in order to validate their readout operation. During oper-
ation in space, the SMT readout is centrally controlled by the UDAQ, and receives the image along
with the trigger signal from the trigger telescope. However, in the standalone test, the SMT elec-
tronics were interfaced directly with the computer by the USB-8451 based on a SPI communication
and handled by the interface software.

Figure 9 shows the image read out by the ICCD using a parallel beam focused by the Ritchey-
Chrètien (RC) telescope and slewing mirror. The parallel beam, which was collimated as∼4 arcsec
in beam divergence, was focused onto the ICCD through the slewing mirror, and the result image
shows the spread point of 3×3 pixels as the full width half maximum (FWHM). The results demon-
strate that the SMT readout works properly and prove that the angular resolution requirements to
the RC telescope are satisfied [7].

3.2 ICCD response measurement

We have measured the ICCD response for a light source of known intensity by adjusting the ADC
gain to determine the dynamic range. To get uniformly scattered light, we used a 12 mm diameter
integrating sphere. A 470 nm light source was employed, and the light from the integrating sphere
was injected uniformly over the ICCD surface. We captured the ICCD images in a dark box using
a standalone SMT readout with the ICCD gain set to 103. Also, the intensity of the diffused light
was measured by a photodiode and a power meter.

Figure 10 shows the ICCD response for a gain of 103 at a given light intensity. The plot shows
the linearity of the ICCD response up to a light intensity of 800 pW. However, non-linearity is
observed for intensities >800 pW, and this indicates that the CCD charge capacity is reached and
saturated for the current configuration of the ADC gain. The maximum charge capacity of the ICCD
is 40,000 photoelectrons. Therefore, the 700 ADC count corresponds to 40,000 photoelectrons in
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Figure 10. ICCD response to light intensity at a gain of 103, with an integrating sphere used as a light
source. The graph is divided into the linear range and non-linear range.

this measurement. The ICCD shows linearity up to 35,000 photoelectrons, which is about 85%
of ICCD charge capacity. An ICCD with the gain of 103 cannot distinguish light measurements
with intensities beneath 200 pW, which indicates a < 50 ADC count. The mean value of the ICCD
readout noise is estimated to be 2,800 photoelectrons from the pedestal runs. The ADC range of
the ICCD can be extended up to an ADC count of 1023 by re-setting the ADC gain achieve a wide
dynamic range at the exact 10-bit resolution.

At gains above 104, the ICCD operates in the photon counting mode. In this mode, the sensi-
tivity is measured by counting the number of photons captured over the exposure time as indicated
in table 1.

4 Space environment test

All telescope systems consist of space qualified components constructed with low-outgassing ma-
terials for greater reliability. All components must pass a shock-vibration test to be deemed capable
of withstanding impact equivalent to a launch from ground and a space environment test including
a thermal-vacuum test to qualify for operation in the extreme conditions above the atmosphere.
The space environment test was performed at the National Space Organization (NSPO) facility
in Taiwan.

The thermal-vacuum test consisted of subjecting the assembled SMT to four thermal cycles
for 60 hours, at temperature ranges between -30 to 40◦C under a vacuum pressure of 10−6 torr. The
thermocouples were attached to all components subject to thermal effects, as shown in figure 11(a).
The functional test was run before and after closing the vacuum chamber, and before and after each
cycle. figure 11(b) shows the temperature profile for the SMT readout. The temperature profile
determined for the readout in the chamber is nearly identical to that of its baseplate. The proximity
of the SMT readout profile is close to the baseplate’s indicates good thermal conductivity. The
slow heat dissipation of the motors is also understandable because they are mounted on the gimbal
structure. Furthermore, none of the electronics components were found to be burned or overheated
during the testing, and the SMT readout demonstrated proper functionality throughout the tests.
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Figure 11. (a) Position of thermocouples for the thermal-vacuum test, (b) temperature profiles of baseplate,
ICCD, SMT readout, and motors A and B. The fast temperature drop at 6 hours was caused by the CCD
readout turning off.

Regarding the shock-vibration test results for the SMT readout, the important point is that the
motors are aligned and that the ICCD’s fiber coupling structure was not affected. An adaptor plate
was installed for attaching the UFFO pathfinder to the shaker plate, and 31 accelerometers were in-
stalled to monitor the more vulnerable positions on the structure. As the shaking direction changed,
the UFFO pathfinder’s position on the shaker plate was changed as well. There were three main
procedures: a sine wave vibration test, a random vibration test, and a shock test with amplitude of
45 g for 3 msec on the x-, y-, and z-axes. To check the results, and low sine wave vibration tests
at 5–2000 Hz with acceleration loads of 0.3 g were undertaken before and after the shock-vibration
tests. As indicated by the equivalent frequency responses recorded during before and after tests,
no components were broken or damaged during the shock-vibration procedures. Additionally, the
tested position where the resonance peaked for frequencies > 200 Hz during sine-wave vibration is
strong enough to endure the shock and vibration during launch. As a result, the shock-vibration test
was passed successfully, and we improved instrument safety without introducing any abnormalities
to structural integrity [7].
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5 Summary

The UFFO-pathfinder has been built to detect early photons from GRBs at the time scale of a couple
of seconds for the first time. The payload is in its final stage of preparation prior to its launch aboard
Lomonosov spacecraft later in 2013. The SMT is a key instrument of the UFFO-pathfinder for the
rapid response in UV/optical observations. It is a 100 mm diameter modified RC telescope with
a slewing mirror system and uses an ICCD as a photon detector. We have described the readout
system of the SMT, covering data readout and system control.

The slewing mirror system, a novel feature of the SMT, is to find its first application in space.
Another significant innovation is that the SMT’s tracking and targeting are controlled by a FPGA
without the inclusion of a CPU in the SMT readout. The slewing mirror has an accuracy of about
4 arcsec to its target, and it slews within 1.5 seconds. The ICCD, which has a gain of up to
106, is designed and fabricated to observe faint UV/optical signals from the space The ICCD is
controlled and read out by the FPGA. Furthermore, the SMT readout have functions to control the
SMT entire system including the slewing mirror, the adjustment of high voltage of ICCD, data
acquisition and storage, data transfer and interface with UFFO Data Acquisition system (UDAQ),
power distribution, and system monitoring. These functions are also developed in the FPGA to
optimize the power consumption and the fast processing time.

We constructed all of the hardware and submitted the assembled device to a performance test.
The SMT readout was designed and built within the constraints of the low power consumption, the
limited instrument scale and the condition against to the shock and vibration caused by launching
and the operation under the large temperature variation and vacuum condition in the space in order
to fulfil the requirements of space mission.

The SMT readout has been integrated and tested with the SMT optics system and the UFFO-
pathfinder as well. We expect that the SMT will be able to detect early GRB emissions and, also,
that it will be able to examine up to 15 triggered events per day to search for GRB candidates.
We also expect that this new technology will provide a new data at of the early phase of GRB
light curves, and thus enhanced understandings of GRB progenitors, central engines, radiation
mechanisms, etc.
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